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A key feature of memory is our ability to selectively recall  
particular experiences even if they occurred in a setting 
shared with other events. For example, if a person is asked to 

recommend a tourist itinerary for a city they have visited frequently, 
they can selectively recall distinct memories of locations from dif-
ferent trips to provide an answer. Although lesion studies have 
demonstrated that many declarative memory processes depend 
on intact medial temporal lobe (MTL) structures, such as the hip-
pocampus and entorhinal cortex1,2, how neuronal activity in these 
regions enables the targeting of a particular memory for retrieval 
among related experiences is not clear.

We examined how the brain represents distinct memories 
through the lens of spatial cognition, relying on the fact that the 
brain uses similar circuits and mechanisms to support both spatial 
and memory processes3,4. The discovery of place cells in the hip-
pocampus5 and grid cells in the entorhinal cortex6 demonstrates 
that neurons in these memory-critical regions2 also exhibit spatial 
tuning. Previous work proposed that spatially tuned cells remap 
their firing patterns across different environments, so events that 
occur in different environments are associated with different spatial 
maps7,8. Recent work has extended the idea that different contexts 
are associated with different spatial maps by showing that the activ-
ity of spatially tuned cells may be modulated by changes to internal, 
top-down processes such as the behavioral state, attention, or goal 
of an animal9–11. In this way, different patterns of spatially modu-
lated neuronal activity may index different behavioral and cognitive 
contexts, and these distinct neural representations may aid in the 
retrieval of distinct memories.

The entorhinal cortex is a viable candidate for linking memory 
retrieval to spatial representation12, as it features a variety of spatially 

tuned cells6,13, plays a role in memory maintenance and retrieval14,15, 
and integrates diverse sensory and cognitive information about an 
experience in service of memory16,17. Recent work has begun to link 
memory processes with spatial firing patterns in the entorhinal 
cortex, such as the identification of object-trace cells in the rodent 
entorhinal cortex, in which spatial tuning was determined by the 
locations previously occupied by objects18, the finding of reduced 
grid-cell representations in patients at risk for Alzheimer’s disease19, 
and the discovery that remembered reward locations influence 
grid-cell field locations20.

Building on this work, we proposed that single neurons in the 
MTL, and particularly in the entorhinal cortex, would exhibit spa-
tial tuning modulated by past experiences. Such separable neuronal 
representations may, in turn, enable top-down, targeted memory 
retrieval of those past experiences. To test this, we analyzed the 
activity of single neurons from the MTL of human epilepsy patients 
as they performed a cued spatial memory task in which they learned 
and subsequently recalled object locations while moving through 
a virtual environment. A key feature of this task was that partici-
pants were provided a cue in each trial denoting the specific object 
location to retrieve, while the environment remained unchanged. 
This enabled the assessment of how top-down, targeted memory 
retrieval might engage distinct spatial representations in the brain. 
We observed single neurons, largely in the entorhinal cortex, with 
spatial tuning that varied as a function of the particular cue pro-
vided for memory retrieval. Specifically, the activity of these cells 
tracked the subjective memory of the patient for the current cued 
object location; hence, we refer to them as ‘memory-trace cells’. 
Furthermore, the firing of entorhinal cortex memory-trace cells 
showed a memory-specific rate code that distinguished which 
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object–location memory had been cued for retrieval. This memory-
specific rate code was robust, emerging both when participants 
were near the location of the cued objects and when participants 
were provided with a retrieval cue but did not move through the 
environment. These findings illustrate how spatially tuned neurons 
in the entorhinal cortex support the ability to use top-down cues to 
selectively target relevant memories for retrieval.

Results
We recorded from 299 neurons in the entorhinal cortex, hippo
campus, amygdala, and cingulate cortex of 19 neurosurgical patients 
who performed an object–location memory task (Fig. 1a and 
Supplementary Figs. 1,2). In this task, participants were instructed 
to learn the locations of different objects along a virtual linear track 
and then to recall the locations after the objects were removed. The 
task consisted of separate encoding and retrieval trials, which fol-
lowed the same general structure except that objects were visible on 
the track during encoding trials and absent during retrieval trials. 
Each trial began with an instruction period, in which participants 
viewed the name of the cued object for that trial. This was followed 
by the hold period, during which participants remained stationary 
at the entrance to the track for 4 s. Next was the movement period, 
in which the participant was moved automatically down the track 
at randomly varying speeds. During encoding trials, the object was 

present on the track, enabling the subject to press a button as they 
reached the visible location of the object (Fig. 1b). During retrieval 
trials, the object was absent and the participant pressed a button 
at the location in which they remembered the cued object being 
present (Supplementary Video 1). Participants generally showed 
high accuracy during retrieval trials, pressing the button within 2.8 
virtual units (VR-bins) of the correct location, or 7% of the track 
length, on average (Fig. 1c).

We examined how the activity of individual neurons (see Fig. 1d 
for example) represented the spatial location of participants in the 
task by computing the firing rate of each neuron as a function of 
the position of the participant along the track during retrieval trials. 
To assess the modulation of neuronal activity, we used a two-way 
repeated-measure analysis of variance (ANOVA) to identify neu-
rons for which activity during retrieval trials varied as a function of 
the location of the participant (1−40 spatial bins), the retrieval cue 
(1−4 possible cues), and their interaction, determining significance 
using a permutation procedure. As we describe below, this analysis 
revealed two groups of neurons with distinct firing patterns (Fig. 2). 
We found neurons with firing rates that varied as a function of only 
participant location, similar to conventional place cells5,21. We also 
found neurons, which we refer to as memory-trace cells, with spatial 
tuning that shifted along the track depending on the retrieval cue 
viewed by the participant at the beginning of each trial.
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Fig. 1 | Task overview. a, Timeline of the object–location memory task. Inset indicates that movement periods either consist of encoding or retrieval 
epochs. b, An overhead map of the environment. Arrow represents the starting point of each trial. c, Mean response error in retrieval trials, averaged over 
all task sessions (n = 31 total sessions). Shading indicates s.e.m. d, Example putative single-unit waveform (n = 6,887 spikes) and example sub-threshold 
background spiking (n = 78,872 spikes). Solid lines indicate mean waveform; shading indicates s.e.m. Inset shows separation of waveform principal 
components (PCs), whereby one cluster represents the putative single-unit waveform and the other represents the background spiking.
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Place cells activate in fixed locations, independent of memory 
retrieval demands. We identified place cells as those that showed  
a significant main effect of location on firing rate and had at least 
one place field (Fig. 3, see Methods). A significant number of  
cells (50 of 299, P = 8.78 × 10−14, binomial test versus 5% chance) 
fulfilled our criteria as place cells. Most place fields were smaller 
than 10% of the track length and none covered more than 40% of 
the track (Fig. 3c).

We found significant numbers of place cells in the entorhinal  
cortex, hippocampus, and cingulate (Fig. 3d, all P values < 10−4, 
binomial test versus 5% chance). To examine the possibility that 
these findings were the result of neuronal responses to time22 or 
speed23, we used an analysis of covariance (ANCOVA) to test 
whether the location-related modulation of these cells persisted 
after including speed and time as covariates24. Almost all (90%) of 
place cells still exhibited significant spatial coding after accounting 
for potential effects of time or speed, indicating that their activity 
primarily reflected the spatial location of the participant.

Spatial tuning of memory-trace cells shifts according to the 
retrieval cue. In contrast to place cells, Fig. 2b depicts the activity 
of two example entorhinal cortex memory-trace cells, with spatial 
tuning that shifted depending on the particular object–location cue 
viewed by the participant at the beginning of each trial. We iden-
tified memory-trace cells systematically as those cells that showed 
significantly increased firing in contiguous spatial bins for at least 
one cue, which we refer to as ‘trace fields’ (see Methods), and that 
had a spatial firing pattern that shifted significantly across different 
cues (determined via a location × cue interaction in the ANOVA). 
Overall, a significant number of cells (43 of 299, P = 6.37 × 10−10, 
binomial test versus 5% chance) fulfilled the criteria for memory-
trace cells (Supplementary Figs. 3,4). These cells were found primar-
ily in the entorhinal and cingulate cortices (Fig. 4a, P values < 10−5, 
binomial tests versus 5% chance). We observed at least one mem-
ory-trace cell in 15 of 19 participants (Supplementary Table 1); 12 of 
19 participants exhibited both place and memory-trace cells.

Individual memory-trace cells exhibited a unique trace field for 
between one and four cues (Fig. 4b and Supplementary Fig. 4), dis-
tinguishing them from cue-association cells in primates25, which 
responded to only a single association. Specifically, the firing of 
many memory-trace cells shifted to represent multiple locations 
over the course of a session, often appearing to fire near the location 
of the object cued for each trial.

To determine whether memory-trace cell activity reflected 
underlying memory retrieval processes, we next examined whether 
the spatial tuning of these neurons was more strongly anchored to 
the response location (where the participant believed the object  
to be) rather than the true location of the object26. If this were the 
case then realigning memory-trace cell firing relative to the response 
location would yield a stronger pattern of spatially modulated firing  
than the pattern observed when realigning firing rate relative to 
the location of the object. We tested this by quantifying the spatial 
information27, a measure of the specificity of the spatial tuning, in 
both the response- and object-aligned configurations for each of 
the four cues. Spatial information was significantly greater in the 
response-aligned configuration than in the object-aligned configu-
ration (Fig. 4c, sign-rank test, z = 3.4, P = 0.0007), suggesting that 
memory-trace cell firing represents the location of the participant 
relative to the location targeted for memory retrieval.

Memory-trace cell activity tracks subjective memory for cued 
object locations during retrieval. Having determined that mem-
ory-trace cells were more strongly spatially tuned in response-
aligned configurations, we next assessed in more detail where these 
cells fired in relation to the location of participant responses. As 
shown in Fig. 5a, trace fields clustered in the spatial bins imme-
diately preceding the response, appearing on average 2.5 VR-bins 
before the response location (t(125) = −2.09, P = 0.038). This sug-
gested that trace-field activity signaled the relevance of a location for 
upcoming memory retrieval28. Furthermore, trace fields appeared 
significantly closer to the response locations of the participants than 
the true object location in a given trial (t(1495) = 1.79, P = 0.037). 
To confirm this preference for locations preceding the response, we 
computed the grand average of memory-trace cell firing rates in 
the spatial locations surrounding the response (Fig. 5b). This con-
firmed that memory-trace cells generally increased their firing as 
participants approached the response location, and then decreased 
following the response (paired t-test pre- versus post-firing rate, 
t(1986) = 3.99, P = 6.73 × 10−25; Supplementary Fig. 5). The broad 
peak and gradual decline in average firing rate across memory-trace 
cells depicted in Fig. 5b reflects the heterogeneity of trace-field off-
sets relative to the response location (Fig. 5a), as opposed to all trace 
fields appearing at the same offset.

To further test whether memory-trace cell activity tracks sub-
jective memory we analyzed the memory-trace cell firing rate in 
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retrieval trials in which participants made large errors (16.8% of tri-
als). These trials enabled us to dissociate participant response loca-
tion and the actual object location. By comparing the response- and 
object-aligned firing rates during these trials, we found that the fir-
ing of these cells peaked significantly closer to the response location 
than the actual object location (Fig. 5c, t(333) = 2.13, P = 0.033). 
These results further support the idea that memory-trace cell spatial 
tuning is anchored to the retrieval of the location of a cued object 
from memory.

Because cells in the MTL have shown evidence of coding for 
time22, we considered the possibility that memory-trace cells were 

firing at specific timepoints, rather than spatial offsets, relative to 
the response (Supplementary Fig. 6). We therefore performed an 
analysis comparing the extent to which individual memory-trace 
cell activity was predicted as a function of distance or time relative 
to the response. This analysis revealed that the firing rates of mem-
ory-trace cells were more strongly predicted by the spatial rather 
than temporal offset (t(42) = 2.35, P = 0.024), supporting the idea 
that memory-trace cell activity represents the distance to upcoming 
recalled locations.

We next sought to better understand the type of distance-to-mem-
ory information represented by memory-trace cells. We examined  
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whether memory-trace cell firing fields appeared at fixed offsets 
from the response location, as might be expected from a general 
distance code for relevant locations11, or whether they appeared 
at cue-specific distances, as might be expected in a form of goal- 
oriented remapping10. We conducted an analysis of trace-field offset 
consistency across cues (Supplementary Fig. 7), and found that a 
significant number of memory-trace cells had trace fields at reliably 
fixed offsets across cues (5 of 37 cells with more than one trace field, 
P = 0.036, binomial test versus 5% chance), whereas a different but 
equally prevalent subset of cells (5 of 37 cells) showed significantly 
variable offsets across cues.

To further determine whether the activity of memory-trace cells 
specifically relates to memory retrieval, we examined their firing 
patterns in encoding trials, in which the cued object was visible. 
Comparing neural activity between encoding and retrieval trials 
(which were perceptually identical apart from the visible object) 
enabled the identification of specific features of memory-trace cell 
responses that related to memory retrieval, while controlling for 
other factors that differed across trials, such as object identity16, 
goal locations11,29, and motor planning30. Overall, we found that, 
when a participant was located in the firing field of a memory-
trace cell, there was increased activity in retrieval trials compared 
to encoding trials (t(125) = 12.9, P = 8.9 × 10−24; Fig. 5d,e). To assess 
whether memory-trace cells simply fired in the same locations  
during encoding trials but with lower firing rates than in retrieval 
trials, we computed the spatial correlation between the memory-
trace cell firing patterns during retrieval and encoding (see Methods 
and Supplementary Fig. 8). Memory-trace cell spatial firing pat-
terns were largely uncorrelated between encoding and retrieval 

trials (χ2(1) = 149.35, P < 2.2 × 10−16), meaning that the spatial tun-
ing observed during retrieval was not present at lower firing rates 
during encoding. By contrast, place cells exhibited significantly 
more stable spatial tuning between encoding and retrieval trials 
than memory-trace cells (Supplementary Fig. 9, Mann-Whitney 
U-test, z = 5.25, P = 1.48 × 10−7). These results indicate that, dur-
ing encoding, memory-trace cells either shift spatial tuning or are 
simply inactive, providing evidence in favor of the idea that the 
observed memory-trace cell spatial tuning uniquely supports mem-
ory retrieval. Furthermore, we found no effect of low versus high 
measures of attention on memory-trace cell activity (see Methods, 
F(1, 639) = 0.16 and 0.48; P values > 0.05, permutation test), indicat-
ing that attention probably did not explain the differences between 
encoding and retrieval. This is consistent with findings indicating 
that attentional mechanisms do not fundamentally differ between 
encoding and retrieval31.

In summary, memory-trace cell spatial tuning was predomi-
nantly modulated by the response location of the participant spe-
cifically during cued memory retrieval. This pattern was robust 
even when participant responses were inaccurate, suggesting that 
memory-trace cells tracked the participants’ internal representation 
of the location of the cued object.

Activity of memory-trace cells in the entorhinal cortex separably 
and robustly represents different memories. Although the above 
analyses showed that the activity of memory-trace cells tracked 
retrieved locations in the environment, whether these cells support 
memory representations more generally beyond moving through 
the relevant environment remained unclear. Understanding this 
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could help to explain how humans are able to remotely recall events 
from outside the environment in which they occurred. We investi-
gated this question by analyzing memory-trace cell activity during 
the hold period of our task, which follows the initial viewing of the 
retrieval cue during the instruction period. We proposed that, dur-
ing the hold period, participants would exhibit similar neural rep-
resentations of the current memory retrieval cue to those exhibited 
when moving through the target location in the environment. We 
therefore investigated whether the same patterns of neuronal activ-
ity associated with retrieval of particular memories during move-
ment also emerged during the hold period. Overall, memory-trace 
cell firing rates were significantly elevated during the hold period 
of retrieval trials (Fig. 6a, F(4, 10075) = 2.88, P = 0.021, post hoc t-tests, 
P values < 0.05, FDR-corrected). This effect was not seen during  
encoding trials, or in non-trace cells (Supplementary Fig. 10).  
This indicates that memory-trace cells were generally engaged  
during the hold period, although participants were still, rather than  
moving through the environment.

We proposed that memory-trace cell activity during the hold 
period would correlate with memory-trace cell activity when partic-
ipants remembered the location during movement. This correlation 
might indicate that memory-trace cell representations for retrieved 
locations generalize beyond memory retrieval during movement, 
supporting the potential use of such representations for retrieval 
across multiple contexts. To facilitate comparison of memory-trace 
cell firing rates across the hold period and the response location, 
we first characterized the changes in firing rate in the spatial bins 

surrounding the response location (Fig. 5b), which we called the 
response period. We measured the magnitude of the response-
modulated changes in memory-trace cell activity by normalizing 
the pre-response firing rate of each cell by its post-response firing 
rate. This accounted for the background activity of each neuron and 
helped to ensure that correlations computed between the hold and 
response periods of a trial would not be confounded by overall trial-
wide increases in firing rate. For each cell, we then computed the 
correlation across trials between the firing rates during the hold and 
response periods (Fig. 6b). We compared this measure to the corre-
lation in firing rate between the hold period and a matched control 
period, which did not include the response (see Methods). We found 
that memory-trace cell firing positively correlated between the hold 
and response periods, and not between the hold and control periods 
(Fig. 6c and Supplementary Fig. 11a), indicating that a consistent 
pattern of neuronal activity for individual cues was present during  
the hold and response periods (see Fig. 6d and Supplementary  
Fig. 11b for examples). Firing rates during these periods did not 
correlate with task performance (Supplementary Fig. 12).

We next used a multivariate cross-decoding analysis32 to more 
fully characterize how the neural representations of specific mem-
ories that emerged during the response period were recapitulated 
across various task periods (see Methods, Supplementary Fig. 13). 
Here we trained separate decoders to predict the currently cued 
object location memory from the normalized firing rates of the 
population of memory-trace cells for each task period. We then 
tested the decoding performance of each model on activity from the 
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response period. In this analysis, if we were to observe that a model 
trained on one period demonstrated elevated decoding perfor-
mance when tested on memory-trace cell firing during the response 
period, then it would indicate that the neural representations of spe-
cific memories were similar between these two periods.

The results of this analysis indicated that the firing rates of ento-
rhinal cortex memory-trace cells represented individual memory 
cues similarly between the hold and response periods. For entorhi-
nal cortex memory-trace cells, when comparing test performance 
in the response period for various training models, only the model 
trained on the hold period showed significantly increased accuracy 
(Fig. 7a, P = 0.0043, binomial test versus 25% chance). This pattern 
was not present for memory-trace cells outside the entorhinal cor-
tex (Fig. 7b). Additionally, we observed significant decoding from 
entorhinal memory-trace cells when models were both trained and 
tested on the response period using tenfold cross-validation (Fig. 
7a; P = 0.029, binomial test), which confirms the reliability of these 
patterns. To characterize the patterns of memory-related neural 
activity across the task more fully, we also performed a complete 
cross-decoding analysis, in which we compared the performance 
of training and testing models across all pairs of task periods 
(Supplementary Fig. 14c). In particular, we did not find significant 
cross-decoding for data from the control period. This indicates that 
entorhinal cortex memory-trace cells do not represent the currently 
cued memory when the participant is far from the target location. 
Furthermore, to test whether these patterns were robust, we also 
individually applied this cross-decoding analysis to the first and 
second halves of each session, but we found that decoding perfor-
mance did not differ between the halves (all P values > 0.05, χ2 test). 
Overall, these results demonstrate that entorhinal cortex memory-
trace cells exhibit a distinctive firing-rate code for individual mem-
ory cues that is consistent both during the hold period and when the 
participant moves through the associated target location.

Discussion
A crucial aspect of human memory is the ability to actively target and 
differentiate between past experiences. Here we show that the activ-
ity of entorhinal cortex memory-trace cells selectively represents 
and differentiates between memories from a single environment. 

Critically, memory-trace cells represent information about loca-
tions that participants had been cued to remember, illustrating how 
top-down memory demands influence the representation of space 
in the brain. Our observations suggest that memory-trace cell activ-
ity represents object locations that a person is trying to remember. 
The activity of entorhinal cortex memory-trace cells, specifically, 
was predictive of the cued memory both during the stationary hold 
period and when participants moved through retrieved locations, 
suggesting that these cells support a generalizable and robust mem-
ory-specific representation. Our findings therefore indicate that, in 
addition to the fixed metric for space provided by grid cells6,13, the 
human entorhinal cortex also contains neurons that support a flex-
ible spatial code modulated by top-down memory demands. Below, 
we discuss how memory-trace cells relate to previous single-cell 
findings in the hippocampus and entorhinal cortex relevant to space 
and memory, and how they help to explain the broader role of the 
entorhinal cortex in the memory network of the brain.

Place cells in the hippocampus are thought to represent a map of 
the current environment, and evidence shows that these representa-
tions remap in response to changes to the environment33,34. This led 
to the idea that different environmental contexts induce orthogonal 
spatial representations in these cells, which are used to index differ-
ent maps for past experiences7,8. The phenomenon of goal-oriented 
remapping, in which place fields change location or accumulate 
near goal locations without changes to local cues or spatial context, 
or both, demonstrates that top-down influence and goal-driven 
behavior can modulate spatial firing9,10. A significant proportion of 
memory-trace cells exhibited firing fields at different offsets from 
the response location depending on the cue being retrieved, dem-
onstrating a potential link to goal-oriented remapping and sug-
gesting that the link between remapping and memory-trace cell 
activity should be further investigated. Furthermore, distal CA1 
place cells—which receive direct entorhinal cortex input—show 
partial remapping based on the presence and location of objects 
in the environment35, raising the possibility that entorhinal cortex 
memory-trace cells also influence or interact with hippocampal 
remapping. Future work should investigate the relationship between 
our findings and remapping, and how these phenomena interact in 
service of memory.
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That memory-trace cell activity tracked the current cued mem-
ory indicates that top-down memory retrieval states influenced 
the firing of these cells. Related work has found cells that represent 
goal-related spatial information in the hippocampal formation of 
rodents and bats11,29,36. The key distinction between memory-trace 
cells and these other cell types is that memory-trace cells do not 
significantly activate when objects, the putative goal, are visible in 
the environment. As such, memory-trace cell activity is probably 
more specifically related to memory retrieval processes, rather than 
goal coding in general. Interestingly, some specific properties of 
memory-trace cells recapitulate elements of these goal-coding cells. 
Specifically, goal cells in the rodent subiculum also fire in loca-
tions preceding rewards11, and goal representations in bats29 are 
also maintained even when the goal is occluded. Additionally, some 
memory-trace cells exhibited firing fields at fixed offsets from the 
response location independent of the cue, providing a potential link 
to hippocampal goal-vector coding. Future work that more exten-
sively measures memory-trace cell activity relative to visible goals 
may characterize their similarity to goal cells.

Our finding that memory-trace cells in the entorhinal cortex, 
in particular, exhibited consistently decodable representations 
of individual object–location memories extends previous work 
documenting the role of the entorhinal cortex in the representa-
tion of object features and context in rodents and non-human pri-
mates16,37. Specifically, our findings bear significant resemblance 
to ‘object-trace cells’ discovered in the rodent entorhinal cortex18 
and cingulate38. Rodent object-trace cells activated in locations in 
which animals had previously encountered objects and could rep-
resent a non-specific, putative trace of all the objects encountered 
by the rodent in the environment. However, human memory-trace 
cells had two crucial additional features that were not observed in 
rodents. The activity of memory-trace cells specifically tracked the 
location recalled by participants, indicating that the top-down mem-
ory target modulated spatial tuning, rather than showing increased 
activity for all previous object–locations as in rodent object-trace 
cells. Additionally, memory-trace cells exhibited a memory-specific 
rate code even when participants were not moving through the 
environment.

This prevalence of memory-trace cells in the entorhinal cortex  
may advance our understanding of the functional role of the ento-
rhinal region in memory. Recent work using neuromodulation  
has demonstrated a causal role for the entorhinal cortex in human 
spatial and episodic memory39,40. Additionally, the entorhinal cortex 
is thought to be an early staging ground for the onset of Alzheimer’s 
disease41,42, with evidence suggesting that the spread of Alzheimer’s 
pathology begins in the entorhinal cortex43 and that entorhinal tau 
is directly linked to memory decline in old age44. Given these lines of 
research, one possibility is that the memory-trace cells we identified 
are affected by stimulation or lesion of the entorhinal cortex, result-
ing in these subsequent effects on memory. Indeed, recent work  
has shown that mice expressing tau pathology in the entorhinal  
cortex showed concomitant spatial memory deficits and major loss 
of cells in entorhinal cortex layers II and III, providing evidence of 
a potential link between loss of memory-related cells in the ento-
rhinal cortex (such as memory-trace cells) and memory deficits45.

Additionally, recent work in humans has shown that the activity 
of grid cells is degraded in people at risk for Alzheimer’s disease19, 
and correlates with spatial memory performance46,47. It is possible 
that grid cells and memory-trace cells both contribute to entorhinal 
cortex memory circuits, and the relationship between them may be 
important to understand how spatial and memory processes inter-
act in the entorhinal cortex. Indeed, two recent studies in rodents 
discovered that grid-cell maps shift to represent remembered 
reward locations, suggesting the influence of task-relevant variables 
on the structure of entorhinal spatial maps20,48. Our findings build 
on this work by demonstrating a specific way in which top-down 

processes may interact with flexible spatial representations to index 
events for memory retrieval in the entorhinal cortex.

We found a small but significant proportion of memory-trace 
cells in the cingulate cortex in addition to the entorhinal cor-
tex. Our previous work identified grid-like single-neuron activity 
in the cingulate cortex of humans, in addition to the entorhinal  
cortex13, which complement related findings from functional mag-
netic resonance imaging (fMRI) showing grid representations 
outside of the entorhinal cortex46. The colocalization of memory-
trace cells and grid cells suggests that these cells represent a com-
mon memory network involving both the entorhinal cortex and the  
cingulate cortex. Going forward, further exploration of the rela-
tionship between memory-trace cells and grid cells may provide 
insights into the neural mechanisms underlying spatial and mne-
monic function across regions.

In conclusion, we demonstrate the existence of memory-trace 
cells that flexibly change their spatial tuning to distinguish indi-
vidual memories during retrieval. Entorhinal cortex memory-trace 
cells exhibited consistent activity across the hold and response 
periods of our task, enabling the decoding of cued memories and 
indicating that entorhinal cortex representations persist beyond 
purely spatial or navigational settings. This supports the idea that 
the entorhinal cortex is important for general relational and con-
textual memory representations16,17. Looking forward, although our  
results focus on how memory modulates spatial tuning to distin-
guish subjective memory representations, other emerging lines  
of work now show that the entorhinal cortex maps non-spatial 
features of experience49,50. Our findings may therefore enable  
new lines of investigation in various species of how entorhinal  
neuronal representations of space and other domains are modulated 
by top-down demands in service of memory and other high-level 
cognitive processes.
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Methods
Task. Nineteen patients with drug-resistant epilepsy performed 31 sessions of 
a spatial memory task at their bedside with a laptop computer and handheld 
controller. This study was approved by the Institutional Review Boards of 
Columbia University, Columbia University Medical Center (New York, NY), 
Emory University (Atlanta, GA), University of Texas Southwestern (Dallas, TX), 
and Thomas Jefferson University (Philadelphia, PA). All participants provided 
written consent agreeing to participation in this experiment. In this virtual reality 
(VR) memory task, participants were moved from the beginning to the end of 
a linear track in each trial. The track was 68 VR-units long, which corresponds 
to approximately 231 meters when converted using the height of the virtual 
avatar relative to the environment and track length. The ground was textured 
to mimic asphalt and the track was surrounded by stone walls (Fig. 1a). In each 
trial participants were placed at the beginning of the track and shown text cues 
instructing them to press a button on the game controller when they reached the 
location of a specified object (instruction period). Immediately after receiving this 
cue, participants pressed a button on a game controller to move to the hold period, 
in which they were held stationary at the entrance to the track for 4 s. Next, the 
movement period began automatically, in which participants were moved forwards 
along the track. Participants were moved passively for 56 of 64 trials, and in the 
other, randomly selected, trials controlled movements with a handheld controller 
(Supplementary Fig. 1a). Individual trials consisted of either encoding or retrieval 
trials (see Fig. 1a). The first two times that participants encountered a particular 
object were encoding trials, in which the object was visible during movement so 
that participants could learn its location. In subsequent retrieval trials, the object 
was invisible and participants were instructed to recall its location by pressing the 
controller button when they believed they were at the correct location. To measure 
task performance, we computed the distance error for each trial, defined as the 
distance between the participant response location and the actual location of the 
object. Participants encoded and retrieved a total of four unique object–location 
associations (16 trials of each) over the course of a session, with each object  
located at a different randomly selected location (Fig. 1b). The temporal order and 
spatial order of objects were randomly associated, such that each object would  
be randomly be assigned to locations 1–4 independent of the temporal order  
of that object (that is, the first object in the session could be presented in the  
fourth location).

In addition to pressing a button to indicate their memory of the object location, 
participants were told to press a button as they entered the stopping zone at the 
end of the track, which is visually delineated by a red floor coloring at the end 
of the track. Pressing the button in this region ended the movement period, and 
participants were then shown a fixation cross for 5 s (fixation period).

Finally, during the feedback period at the end of each trial, participants 
received points corresponding to how close to the correct location they pressed 
the button during movement. Only one object was ever present on the track at any 
given time. The task was split into two blocks so that participants would only be 
cued to retrieve from either the first or second object in the first block versus the 
third or fourth object for the second block. After learning the location of an object 
during the encoding trials, participants were cued with that object for at least two 
consecutive trials before potentially being cued with the other object for that block 
(see Supplementary Fig. 1a).

A distinctive feature of our task was that, during movement periods, participants 
were moved passively while their speed was automatically changed in a seemingly 
random fashion. These uncontrolled speed changes encouraged participants to 
attend continuously to their current VR location because they could not accurately 
predict future positions by integrating their past velocity. Within each third of the 
track, participants were moved at a constant speed, which was randomly chosen 
from the range of 2–12 VR-units s−1. The areas in which speed changes occurred 
are indicated in the schematic shown in Fig. 1b. When speed changes occurred, 
acceleration took place gradually over the course of 1 s to avoid a jarring transition.

Data recording. The participants in our study were epilepsy patients who had 
Behnke–Fried microelectrodes (Ad-Tech Medical) surgically implanted in the 
course of clinical seizure mapping51 at four hospital sites: Emory University 
Hospital, University of Texas Southwestern Medical Center, Thomas Jefferson 
University Hospital, and Columbia University Medical Center. Microwire 
implantation and data acquisition largely followed previously reported procedures13 
and were approved by an institutional review board at all participating institutions, 
and informed consent was obtained from all participants. The depth electrodes 
featured 9 platinum–iridium microwires (40 µm) extending from the electrode tip 
and were implanted in target regions selected for clinical purposes. We recorded 
microwire data at 30 kHz using either the Cheetah (Neuralynx) or NeuroPort 
(Blackrock Microsystems) recording systems. Data collection and analysis were 
not performed blind to the conditions of the experiments. We used Combinato52 
for spike detection and sorting. We excluded neurons that had a mean firing rate 
of less than 0.2 Hz or more than 15 Hz (potential interneurons). Manual sorting 
identified single- versus multi-unit activity versus noise on the basis of previously 
determined criteria53,54.

Microelectrode bundle localization followed a similar process to that 
described previously39,55. We determined the anatomic location of each implanted 

microwire electrode bundle using a combination of pre-implantation MRI and 
post-implantation computed tomography (CT) scans (Supplementary Fig. 2). 
First, we performed automated whole brain and MTL anatomic segmentation on 
T1-weighted (whole brain coverage, 3D acquisition, 1 mm isotropic resolution) 
and T2-weighted (temporal lobe coverage, coronal turbo spin echo acquisition, 
0.4 × 0.4 × 2 mm resolution) MRI56,57.

A post-implantation CT scan was then co-registered to the MRI scans and 
a neuroradiologist identified the positions of electrode contacts and microwire 
bundles based on the source images and processed data58. Further detail regarding 
imaging parameters can be found in the Nature Research Reporting Summary.

Statistical analysis. No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous publications13,59. For 
all omnibus testing (ANOVA) described in this study, we used a non-parametric 
permutation method to generate a large number of permutations in which 
observations are permuted within each block. This enabled us to determine 
critical statistics and P values (permutation adjusted) against empirically derived 
null distributions. False discovery rate (FDR) adjustment was used to correct for 
multiple comparisons where appropriate. Firing rate was z-scored within each 
session, omitting manual movement trials. Because overall z-scored firing rates 
may be subject to bias from stimulus-induced increases in firing rate, we computed 
the z-score after removing the spatial bin with the highest firing rate in each 
trial or spatial bins with z > 3.29 (exceeding the 99.9th percentile of the normal 
distribution).

Identifying place cells and memory-trace cells. To examine how neuronal 
activity varied with location in the virtual environment, we binned the virtual 
track into 40 bins, referred to as VR-bins (equivalent to 1.7 VR-units), enabling 
the measurement of neuronal firing rates in this binned space. For each cell, we 
counted the spikes in each spatial bin and divided this quantity by the time spent 
in that bin to yield a firing rate estimate. We smoothed this firing rate estimate on a 
single-trial level using a Gaussian kernel with a width of 8 VR-bins (± 4 VR-bins). 
We excluded the bins in which participants spent less than 100 ms over the course 
of the entire task. This excluded several bins in the stopping zone, because the 
movement period ended as soon as participants pressed the button in the stopping 
zone. We did not analyze data from the manual movement trials for this study.

We used a two-way repeated-measure ANOVA to examine the effects of 
participant location (1–40 VR-bins), object retrieval cue (1, 2, 3, 4), and their 
interaction, on the binned firing rate of each cell. After using ANOVA to screen 
cell responses, we defined individual spatial firing fields as contiguous bins in 
which firing rate exceeded a baseline threshold21,36,60,61. We determined this baseline 
threshold independently for each cell, using non-parametric permutation testing 
to build empirical estimates of the threshold by circularly shifting the firing rate 
estimates 500 times, re-binning the firing rate, and selecting the 95th percentile of 
the permuted distribution of firing rates.

We defined place cells as those cells that showed a significant main effect of 
location on firing rate via the ANOVA, and that also had a spatial firing field 
(place field) greater than 5% the size of the track. Additionally, we performed an 
ANCOVA to confirm the main effect of position in the ANOVA, with position 
serving as a main factor and speed and time as covariates24. This analysis used a 3 
s window surrounding the response, as anticipatory motor responses occur within 
1 s of a movement30. We only considered a neuron to be a place cell if its firing 
was significantly modulated by participant location even after factoring time and 
speed in as covariates in the ANCOVA. Additionally, six cells showed a main effect 
of object cue on firing rate. These cells were excluded from analyses. We defined 
memory-trace cells as those cells with a firing rate that showed an interaction 
between participant location and object cue in the ANOVA and that showed a 
significant spatial firing field (trace field) for at least one cue. A trace field for a 
particular object cue was considered unique if the peak location, in which firing 
rate was maximal, did not overlap with that of any other trace field for that cell.

Because all subsequent analyses relied on our characterization of place and 
memory-trace cells, we conducted a range of control analyses to ensure that the 
proportions of cells categorized as such was robust to: dependence between task 
sessions for individual patients, recordings from seizure-onset zones, changes 
in bin-size for spatial firing-rate estimates, and the statistical assumptions 
of our omnibus testing. These analyses and their results are summarized in 
Supplementary Table 2.

Correlation between encoding and retrieval firing rates. We computed the 
correlation between the spatial firing patterns of each memory-trace cell between 
retrieval and encoding trials to establish whether memory-trace cells fire in 
the same locations during these phases at different firing rates (‘congruent’) or 
whether they exhibited completely different firing patterns during these two 
phases (‘incongruent’). Specifically, we limited this analysis to the blocks of trials 
in which the participant viewed a cue for which a memory-trace cell had a trace 
field, as these cells had trace fields for 1–4 of the cues. We assessed significance 
using a permutation procedure, comparing the actual correlation coefficient to the 
coefficient computed by applying the same procedure to randomly shuffled firing 
rate vectors. We then tested the significance of the proportion of cue conditions 
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showing congruent spatial firing between encoding and retrieval trace fields 
against the proportion showing incongruent spatial firing.

Assay of attention during encoding trials. We examined the effect of attention62 
on memory-trace cell activity. To assay attention, we relied on the fact that the 
object is visible during the encoding trials of the task. This visibility ensured 
that the performance of participants in these trials would depend primarily on 
how closely the participant was attending to their location in space. We therefore 
used the distance error of participants in encoding trials as a proxy measure for 
attention level. This assay allowed examination of the putative effect of attention 
on neural activity independently of memory retrieval. We therefore split encoding 
trials into low- and high-attention groups, based on whether the distance error 
between the button press and the visible object was greater or less than 1.5 VR-
bins, respectively (determined via mean split). We performed a two-way ANOVA 
assessing how memory-trace cell activity during encoding was modulated by 
attention level in that trial (low or high) as well as the location of the trace field 
relative to the response.

Task period firing rate comparison. To compare the magnitude of pre- versus 
post-response firing rate changes to firing rates during different task periods, we 
computed the response period firing rate by normalizing the activity in the 10 VR-
bins preceding the response by the 10 VR-bins following the response. This also 
helped to ensure that correlations computed between task periods and the response 
period (see Fig. 6) were not confounded by trial-wide increases in baseline firing 
rate. We used robust linear regression to examine the correlation between hold and 
response period activity (Fig. 6b,c). This approach minimizes the effect of outliers 
using iteratively re-weighted least squares with a bisquare weighting function63.

To further verify that some other aspect of our chosen response period was not 
leading to artifactual correlation, we computed the correlation between the hold 
period firing rate and a matched control period. The control period was computed 
identically to the response period, but we used the regions of the track that did 
not overlap with the response period. In this way, the control period was of equal 
length to the response period, and the neural activity during this control period did 
not overlap with the neural activity during the response period to control for the 
effect of the response on firing rate.

Cross-decoding analysis. We used a multivariate cross-decoding framework 
to test whether memory-trace cell activity reflected information about each 
object–location memory across different retrieval contexts. A schematic for 
this framework is shown in Supplementary Fig. 13. To assess cross-decoding 
performance, we pooled the memory-trace cells recorded across all patients and 
sessions and constructed two pseudopopulations: entorhinal cortex memory-
trace cells and non-entorhinal memory-trace cells. Pseudopopulation decoding 
has been used to describe the common neural dynamics of functionally similar 
subsets of cells without the inherent noise correlations shared by neurons recorded 
in the same session59. For each decoder, we used a k-nearest neighbors algorithm 
using a one-versus-all paradigm for multi-class decoding of the remembered item 
from the recorded neuronal activity. Firing rates were binned by task period and 
normalized. As detailed in the previous section, we computed the response period 
firing rate by normalizing the activity in the 10 VR-bins preceding the response 
by the 10 VR-bins following the response for each trial (Supplementary Fig. 13). 
We computed the response period firing rate for each trial, regardless of response 
accuracy. We also used a similar method to compute a matched control period, 
which was based on the 20 VR-bins that were not used to compute the response 
period activity.

For cross-decoding, each separate decoder was trained to predict the currently 
cued object–location memory from the normalized firing rates of the population of 
memory-trace cells for each of the task periods.

Each model was then tested on activity from a different period. In addition to 
our cross-decoding framework, we trained and tested decoders on the activity of 
the same period—these decoders were trained using leave-one-out cross-validation 
to assess performance (Supplementary Fig. 13). We assessed significant decoding 
accuracy using a binomial test. Chance-level decoding accuracy was 25%, as 
verified by shuffling all labels and reassessing the decoding performance across the 
1,000 random permutations.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on reasonable request 
from the corresponding author. The data are not publicly available because they 
could compromise research participant privacy and consent.

Code availability
Task was coded using the publicly available programming library PandaEPL64. 
Analysis was performed in Matlab and spike sorting in Python using the publicly 
available software package Combinato52. Analysis code is available on reasonable 
request from the corresponding author.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Task was coded using the publicly available programming library PandaEPL. Data was recorded using commercial software from 
BlackRock Microsystems (v 7.0.5.0) and Neuralynx (v 5.6.0).

Data analysis Analysis was performed in Matlab (v 2015b) and spike sorting in Python using the publicly available code Combinato (no version #). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings of this study are available on reasonable request from the corresponding author. The data are not publicly available because they 
could compromise research participant privacy/consent.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications.

Data exclusions Individual cells were excluded based on standard criteria for recording quality, described in the Methods. Spike sorting was done using 
Combinato, which uses a technique called super-paramagnetic clustering to identify potential waveform clusters based on recorded 
threshold-crossings. Then, the algorithm over-clusters and performs iterative template-matching to yield putative single-units. After 
identifying putative single-unit activity, we excluded neurons that had a  mean firing rate below 0.2 Hz or above 15 Hz (potential 
interneurons).

Replication Findings replicated across multiple subjects, and findings also replicated from multiple sessions within some subjects.

Randomization Subjects were all allocated into one group for analysis.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments. Blinding was not relevant to our study. The data 
collected requires many processing steps to become interpretable, so there is no way for the experimenter to be biased 
during data collection by results coming in.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics All subject demographic information is in Supplementary Table 1 of the manuscript. Briefly, all subjects were patients undergoing 
surgical treatment for epilepsy. We included data from 19 such patients (13 male, 6 female). Mean age was 34.1 years, with a 
standard deviation of 11.9 years. 

Recruitment Subjects were recruited from the pool of epilepsy patients between the ages of 18 and 65 years, with close to normal 
neuropsych evaluation, who were undergoing chronic implantation of subdural and/or intracortical electrodes with long term 
EEG recording for clinical purposes. It is possible that self-selection bias may be present, i.e. patients with depression or low-
motivation levels may have opted out of research, but we do not believe this affected our electrophysiological findings.

Ethics oversight Study protocol was approved by IRB at Emory University Hospital (Atlanta, GA), UT Southwestern Medical Center (Dallas, TX), 
Thomas Jefferson University Hospital (Philadelphia, PA), and Columbia University Medical Center (New York, NY). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging
Experimental design

Design type MRI were acquired purely for clinical purposes to indicate electrode placement, and were not a part of the experiment.

Design specifications MRI were acquired purely for clinical purposes to indicate electrode placement, and were not a part of the experiment.

Behavioral performance measures MRI were acquired purely for clinical purposes to indicate electrode placement, and were not a part of the experiment.

Acquisition

Imaging type(s) Structural MRI and CT

Field strength 3T MRI - before electrode implantation, 1.5 T MRI - after implantation

Sequence & imaging parameters Sequence & imaging parameters: Imaging parameters varied somewhat among institutions in this multisite study. In 
general, sequences required for macroelectrode and microwire localization included 3D T1-weighted with 1 mm or less 
isotropic resolution, coronal fast spin echo T2-weighted with 0.4 x 0.4 mm in-plane resolution and 2 mm slice thickness, 
and CT with less than 1 mm slice thickness. Representative examples are as follows: Pre-implant 3D T1-weighted 
MPRAGE (TR 1900 ms, TE 2.52 ms, flip angle 9, 1 mm isotropic resolution, 216 x 256 x 174 matrix), pre-implant coronal 
FSE T2-weighted (TR 7200 ms, 76 ms, ETL 15, flip angle 139, 0.4 x 0.4 x 2 mm, 448 x 448 x 30), post-implant CT (0.5 x 0.5 
x 0.625 mm, 512 x 512 x 384).

Area of acquisition T1 - whole brain, T2 - temporal lobes spanning and oriented perpendicular to the hippocampal long axis 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Segmentations of hippocampal subfields and parahippocampal cortical regions including the entorhinal cortex were 
generated from 3D T1-weighted and coronal T2-weighted images using Automatic Segmentation of Hippocampal 
Subfields (ASHS) software.

Normalization Pre-implant MRI, post-implant CT, and when available post-implant MRI scans were all aligned to each other using rigid 
registration based on mutual information with Advanced Normalization Tools (ANTS) softwar

Normalization template No normalization template was used.

Noise and artifact removal No noise or artifact removal was used.

Volume censoring No volume censoring was used.

Statistical modeling & inference

Model type and settings No statistical modeling was used as MRI were acquired for clinical purposes to indicate electrode placement.

Effect(s) tested No effects tested as MRI were acquired for clinical purposes to indicate electrode placement.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

Pre and post-implant MRI and post-implant CT scans were co-registered based on maximal mutual 
information using ANTS software. Segmentations of hippocampal subfields and parahippocampal cortical 
regions including the entorhinal cortex were generated from 3D T1-weighted and coronal T2-weighted 
images using Automatic Segmentation of Hippocampal Subfields (ASHS) software. 

Statistic type for inference
(See Eklund et al. 2016)

No inference was done as MRI were acquired for clinical purposes to indicate electrode placement.

Correction No correction was used as MRI were acquired for clinical purposes to indicate electrode placement.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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