
Article
Theta and Alpha Oscillatio
ns Are Traveling Waves in
the Human Neocortex
Highlights
d Theta and alpha oscillations are spatially clustered in the

human neocortex

d Clustered oscillations display traveling waves

d Traveling waves generally propagate in a posterior-to-

anterior direction

d Traveling waves can be modeled as coupled oscillators
Zhang et al., 2018, Neuron 98, 1269–1281
June 27, 2018 ª 2018 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2018.05.019
Authors

Honghui Zhang, Andrew J. Watrous,

Ansh Patel, Joshua Jacobs

Correspondence
joshua.jacobs@columbia.edu

In Brief

Zhang et al. use direct human brain

recordings to show that neural

oscillations are spatially propagating

waves that move across the cortex. The

results show that oscillations coordinate

activity between brain regions rather than

being a local phenomenon.

mailto:joshua.jacobs@columbia.�edu
https://doi.org/10.1016/j.neuron.2018.05.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2018.05.019&domain=pdf


Neuron

Article
Theta and Alpha Oscillations
Are Traveling Waves in the Human Neocortex
Honghui Zhang,1 Andrew J. Watrous,1 Ansh Patel,1 and Joshua Jacobs1,2,*
1School of Biomedical Engineering, Columbia University, New York, NY 10027, USA
2Lead Contact

*Correspondence: joshua.jacobs@columbia.edu
https://doi.org/10.1016/j.neuron.2018.05.019
SUMMARY

Human cognition requires the coordination of neural
activity across widespread brain networks. Here, we
describe a new mechanism for large-scale coordi-
nation in the human brain: traveling waves of theta
and alpha oscillations. Examining direct brain re-
cordings from neurosurgical patients performing a
memory task, we found contiguous clusters of cor-
tex in individual patients with oscillations at specific
frequencies within 2 to 15 Hz. These oscillatory
clusters displayed spatial phase gradients, indi-
cating that they formed traveling waves that propa-
gated at �0.25–0.75 m/s. Traveling waves were
relevant behaviorally because their propagation
correlated with task events and was more consis-
tent when subjects performed the task well. Human
traveling theta and alpha waves can be modeled by
a network of coupled oscillators because the direc-
tion of wave propagation correlated with the spatial
orientation of local frequency gradients. Our find-
ings suggest that oscillations support brain connec-
tivity by organizing neural processes across space
and time.

INTRODUCTION

Oscillations have a distinctive role in brain function because they

coordinate neuronal activity onmultiple scales. Brain oscillations

are important at the microscale, because they modulate the

timing of neuronal spiking (Bragin et al., 1995; Jacobs et al.,

2007), and at the macroscale, where they synchronize distrib-

uted cortical networks that are communicating (Fries, 2005).

Owing to oscillations’ ability to coordinate neural processes

across multiple scales, characterizing their spatiotemporal

properties may reveal how neurons across multiple regions

are dynamically coordinated to support behavior (Kopell

et al., 2014).

The human cortex displays oscillations at various frequencies

during cognition (Buzsáki and Draguhn, 2004). To understand

how these patterns relate to behavior, researchers have gener-

ally examined the properties of oscillations at individual fre-

quencies in local networks (Raghavachari et al., 2006; Jacobs
et al., 2007) or in point-to-point links between distinct regions

(Watrous et al., 2013). These approaches ignore a key feature

of cortical oscillations that emerged from animal studies—that

oscillations at multiple frequencies form spatially continuous

neural patterns (Freeman and Schneider, 1982; Freeman et al.,

2000; Agarwal et al., 2014).

One such pattern is a traveling wave, which consists of a

spatially coherent oscillation that propagates progressively

across the cortex, reminiscent of a wave moving across water.

Traveling waves have been studied most extensively in animal

models, where they were observed most often in fine-scale re-

cordings and were shown to be functionally important to various

behaviors, including visual perception (Zanos et al., 2015),

spatial navigation (Lubenov and Siapas, 2009; Patel et al.,

2012), and movement (Rubino et al., 2006). In conjunction with

predictions of computational models, these findings suggest

that traveling waves are a key mechanism for guiding the spatial

propagation of neural activity and computational processes

across the brain (Ermentrout and Kleinfeld, 2001; Muller

et al., 2018).

There were some reports of traveling-wave-like patterns in hu-

mans, but these patterns were generally observed during sleep

or rest (Bahramisharif et al., 2013; Massimini et al., 2004; Muller

et al., 2016). Given the potential importance of spatially coordi-

nated brain oscillations for distributed cortical processes,

several studies tested for large-scale synchronized oscillations

in the human cortex during cognition. However, this oscillatory

synchrony was rare or present only on a small scale in humans

(Bullock et al., 1995; Menon et al., 1996; Raghavachari et al.,

2006). These results shed doubt on the possibility that large-

scale spatially coordinated oscillations, such as traveling waves,

figured prominently in human cortical processing.

We re-examined the potential role of cortical traveling waves in

human cognition by analyzing electrocorticographic (ECoG)

brain recordings from 77 neurosurgical patients. We analyzed

the data with a new technique that identifies traveling waves at

the single-trial level across various frequencies and electrode

configurations. As we describe below, we found traveling waves

in 84% (65 of 77) of subjects (for subject details, see Table S1).

Traveling waves were present across a wide frequency range

(2 to 15 Hz) that included the theta and alpha bands and were

relevant behaviorally, as their propagation correlated with sub-

ject performance and events in a memory task. Our results

indicate that human behavior is supported by traveling waves

of theta- and alpha-band oscillations that propagate across

the cortex.
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Figure 1. Example Traveling Waves in the Human Neocortex
(A)–(G) show data from an 8.3-Hz traveling wave in patient 1.

(A) Top: raw signals for 4 s of one trial from three selected electrodes. The selected electrodes are ordered from anterior (top) to posterior (bottom). Middle: a

500-ms zoomed version of the signals from the top panel. Bottom: signals filtered at 6–10 Hz.

(B) Relative phase of this traveling wave on this trial across the 33 8 electrode grid. Color indicates the relative phase on each electrode. Arrow indicates direction

of wave propagation. Inset shows the normalized power spectrum for each electrode, demonstrating that all the electrodes exhibit narrowband 8.3-Hz

oscillations.

(C) Illustration of the circular-linear model for quantifying single-trial spatial phase gradients and traveling waves. Black dots indicate the relative phase for each

electrode in this cluster on this trial; colored surface indicates the fitted phase plane from the circular-linear model; black lines indicate residuals.

(D) The topography of this traveling wave’s phase at four time points during this trial.

(E) Analysis of phase-gradient directionality (PGD) for the traveling waves on this cluster. Black line indicates the median PGD for this cluster, computed across

trials. Gray bars indicate the distribution of median PGD values expected by chance for this cluster, estimated from shuffled data.

(F) Circular histogram indicating the distribution across trials of propagation directions for the traveling waves on this cluster.

(legend continued on next page)
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RESULTS

To identify traveling waves in the human cortex, we examined

direct ECoG brain recordings from neurosurgical patients per-

forming a working memory task (Sternberg, 1966), which was

previously shown to elicit large-amplitude oscillations related

to memory at various frequencies (Raghavachari et al., 2001; Ja-

cobs and Kahana, 2009). Here, we analyzed these data using a

new analytical framework that can identify traveling waves by

characterizing the spatiotemporal structure of the oscillations

in each patient individually.

Human Brain Oscillations Are Spatially Clustered
One form of a traveling wave that could appear in ECoG signals

from one patient is a phase wave, which is a neuronal oscillation

that is visible simultaneously on multiple electrodes at the same

frequency with a systematic timing (or phase) gradient across

space. Owing to the spatial phase gradient, the oscillation ap-

pears to propagate across the cortex (Ermentrout and Kleinfeld,

2001). A requirement for this type of traveling wave is that the sig-

nals across multiple neighboring electrodes exhibit oscillations

at the same frequency. Thus, our first step in identifying human

cortical traveling waves was to find clusters of cortex where

contiguous electrodes showed oscillations at the same fre-

quency. To identify these patterns, we examined the recording

from each electrode individually, identified sites that showed

narrowband oscillations, and then measured their frequency.

We distinguished these oscillations by using a peak-picking al-

gorithm, which found narrowband oscillatory peaks that were

elevated over the background 1=f ECoG power spectrum

(Manning et al., 2009).

Using this technique,we identified electrodeswith narrowband

oscillations at various frequencies. Most patients had spatially

contiguous clusters of electrodes that showednarrowband oscil-

lations at the same or a similar frequency. We identified these

electrode groups using a clustering algorithm (see STAR

Methods; Figures S1A–S1F). We refer to a contiguous group of

four or more electrodes with oscillations at similar frequencies

as an ‘‘oscillation cluster.’’ Across 77 patients, we found a total

of 208 oscillation clusters. Oscillation clusters were present at

frequencies from 2 to 15 Hz, involved 59% of all electrodes

(2,401 of 4,077), and were present in 74 (96%) patients.

The frequencies of oscillation clusters often differed across in-

dividuals even for electrodes in the same anatomical region (Fig-

ure S2). This suggested to us that oscillation clusters could

reflect distinctive cortical networks that were individualized for

a given patient. To assess whether there were true intersubject

differences in the frequencies of oscillation clusters, we tested

for a spatial correlation in the frequencies of narrowband oscilla-

tions across electrodes in each subject using Moran’s I statistic

(Moran, 1950). Here, we computed I for each subject and

compared the mean I with the values computed from a shuffling
(G) Illustration of the average traveling wave on this cluster across trials. Each elec

oscillation troughs triggered from electrode 5.

(H) Example 5.9-Hz traveling wave from patient 3.

(I) Example 7.9-Hz traveling wave from patient 63.

(J) Example 8.8-Hz traveling wave from patient 77.
procedure that randomly interchanged electrodes between

subjects. This analysis thus tested the hypothesis that the fre-

quencies of oscillations were more correlated between nearby

electrodes within a patient compared to electrodes at similar

anatomical locations in other patients. The mean within-subject

frequency correlation that we observed (I = 0:03) was entirely

outside the range of values computed from the shuffled data

(p< 10�3; Figure S1G). This result indicated that clusters of

ECoG electrodes with narrowband oscillations at the same

frequency reflected robust within-subject spatial frequency

clustering.

The widespread presence of oscillation clusters indicates that

neuronal oscillations at a single frequency were present across

large regions of the human cortex. If the timing of these oscilla-

tions were synchronized, it could provide evidence for large-

scale oscillatory networks (Kopell et al., 2014). Thus, we next

characterized the timing of activity across each oscillation clus-

ter to identify patterns of phase synchrony, such as traveling

waves (Prechtl et al., 1997; Rubino et al., 2006; Patel et al.,

2012; Patten et al., 2012; Bahramisharif et al., 2013; Zhang and

Jacobs, 2015).

Oscillation Clusters Contain Traveling Waves
Visual inspection of the signals across many oscillation clusters

indicated that the timing of individual oscillation cycles varied

systematically with the electrode location, which is indicative

of a traveling wave. As an example, Figures 1A–1D show the ac-

tivity on one trial across an 8.3-Hz oscillation cluster in an elec-

trode grid from patient 1. While 8.3-Hz oscillations were visible

on all channels in this grid, the relative timing of this signal varied

systematically, such that the onset time of each oscillation cycle

correlated with the electrode’s anterior-posterior position.

We quantified this phenomenon by calculating the relative

phase of the oscillation on each electrode and trial. On this trial,

the electrodes in this cluster showed a continuous spatial phase

shift across a range of�240� (Figure 1B). In this scheme, positive

phase shifts correspond to oscillators that have been advancing

for a longer period of time. Thus, because the phase was largest

at posterior electrodes, it indicates that the electrode cluster

showed an anterior-to-posterior traveling wave on this trial (see

Video S1).

We used circular statistics (Fisher, 1993) to first identify human

cortical traveling waves at the single-trial level and then to

compare their properties at the group level. For each oscillation

cluster, at each time point within a trial, we used a circular-linear

model to characterize the relation between electrode position

and oscillation phase (Figure 1C). This procedure models each

cluster’s instantaneous phase distribution as a plane wave,

finding the best-fitting spatial phase gradient. The fitted phase

gradient provides a quantitative estimate of the speed and

direction of traveling wave propagation (Figure S3). We compute

the instantaneous robustness of the traveling wave on each
trode’s time-averaged waveform is computed as the average signal relative to
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Figure 2. Population Analysis of Traveling Wave Direction and Frequency

(A) Spatial topography of mean traveling wave direction and frequency. Colored arrows indicate the mean direction and frequency of traveling waves observed at

an electrode within 1.5 cm.

(B) Distribution of the mean direction of traveling waves from each lobe. The orientations of the polar histograms are projected to match the lateral brain view.

(C) Distributions of temporal frequencies for traveling waves from different regions; shaded region indicates probability density. Black dots indicate the mean

frequency from individual electrode clusters.
electrode cluster by computing, for each trial, the proportion of

phase variation that is explained by the circular-linear model,

which we call the phase-gradient directionality (PGD).

We assessed whether each oscillation cluster exhibited a reli-

able traveling wave using a permutation procedure. Here, we

compared each electrode cluster’s median PGD value to the dis-

tribution of PGD values expected by chance (Figure 1E). This

analysis demonstrated that traveling waves on the cluster in Fig-

ures 1A–1Dwere statistically reliable on a single-trial basis (mean

PGD = 0:35, p< 0:001). Furthermore, by assessing the distribu-

tion of propagation directions across trials for this cluster, we

determined that these traveling waves consistently moved in

an anterior-to-posterior direction (r = 0:94, Rayleigh p< 0:001;

Figure 1F). The traveling wave on this cluster is also visible by

using a simpler approach based on temporal averaging (Fig-

ure 1G). Figures 1H–1J shows example electrode clusters in

other patients that also showed robust traveling waves.

We applied this methodology across our dataset and found

that 140 (of 208; 67%) oscillation clusters had consistent trav-

eling waves, defined as showing both reliable plane waves at

the single-trial level and having a consistent propagation direc-

tion (see STAR Methods). 30 (14%) oscillation clusters showed
1272 Neuron 98, 1269–1281, June 27, 2018
reliable plane waves at the single-trial level but did not have a

consistent propagation direction across trials; the remaining 38

(18%) clusters did not show reliable single-trial plane waves.

Traveling waves involved 47%of all electrodes andwere present

in all lobes of the neocortex across both left and right hemi-

spheres (Table S2). Thus, traveling waves are a broad phenom-

enon across the human brain.

Population Analyses of Traveling Waves
Having established that human cortical traveling waves were

widespread, we next studied their properties in more detail at

the population level. First, we compared the properties of trav-

eling waves from oscillation clusters identified in different brain

areas (Figures 2A and 2B; Video S2). Traveling waves in the fron-

tal and temporal lobes generally propagated in a posterior-to-

anterior direction (p values <0:01, Rayleigh tests). In addition,

frontal traveling waves had a tendency to propagate toward

the midline. In the occipital and parietal lobes, the propagation

direction of traveling waves varied and were not reliably clus-

tered (p> 0:05).

We also compared the temporal frequencies of the oscillation

clusters that showed significant traveling waves (Figure 2C).
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Figure 3. Population Summary Statistics on Traveling Waves

(A) Histogram showing the counts of electrode clusters per patient that showed significant traveling waves.

(B) Distribution of the narrowband power (relative to 1=f ) of traveling waves.

(C) Distributions of estimated spatial radius across traveling wave clusters. Purple bars indicate data from grid electrodes; other bars come from strips. Black line

indicates median.

(D) Distribution of propagation speed across clusters.

(E) Distribution of wavelength.

(F) Distribution of the mean percentage of time when individual clusters showed reliable traveling waves at the single-trial level.
Traveling waves were present at frequencies from 2 to 15 Hz.

Traveling waves in the frontal lobe had a slower mean temporal

frequency in the theta range (6 Hz). In contrast, traveling waves

in occipital and temporal regions had faster alpha-band fre-

quencies (mean 9 Hz; ANOVA, Fð2;137Þ = 9:7, p< 0:01). It is

notable that the frequencies of the traveling waves in these areas

were similar to the frequencies of the oscillations that had been

reported in these regions earlier (Klimesch, 1999; Canolty et al.,

2006; Voytek et al., 2010; Groppe et al., 2013) because it sug-

gests that many previously reported neural oscillations could in

fact be traveling waves.

We computed additional properties of traveling waves at the

group level. Althoughmost subjects had only one or twoelectrode

clusters with traveling waves, a small number of subjects showed

up to five such clusters (Figure 3A). In most cases (99% of elec-

trodes), themultiple clusters in a subject did not overlap. Traveling

waves with frequencies near �8 Hz had the highest power (Fig-

ure 3B). The electrode clusters with traveling waves ranged in

size substantially (Figure 3C), having a median radius of 2.5 cm

(�20 cm2) up to a maximum of �6 cm (�113 cm2). Traveling

waveshad amedian propagation speedof 0.55m/s and amedian

wavelength of 11.7 cm, but these values varied substantially

across the population (Figures 3D and 3E). Finally, we measured

the prevalence of traveling waves at the single-trial level. Across

the significant oscillation clusters, traveling waves were present

on 61% of single trials (median), although some clusters showed

traveling waves on 80%–100% of trials (Figure 3F).
Traveling Waves Are Behaviorally Relevant
We hypothesized that the spatial propagation of traveling waves

reflected the movement of neural activity across the cortex in a

manner that was important for behavior. Although some previous

studies had measured human cortical traveling waves during

tasks, they did not show clear correlations to behavior (Massi-

mini et al., 2004; Takahashi et al., 2011; Bahramisharif et al.,

2013). We tested for a potential functional role for traveling

waves by comparing their properties through the course of

memory processing. In each trial of the memory task (Sternberg,

1966), patients learned a list of stimuli and then viewed a retrieval

cue. By comparing traveling wave properties during the task, we

sought to identify functional properties of traveling waves and to

test whether they differ across brain regions.

We computed each cluster’s directional consistency (DC),

which measures the degree to which traveling waves on each

cluster showed a consistent propagation direction at a particular

time point relative to task events. DC, which is computed across

trials, varies between 0 and 1, with 1 indicating that traveling

waves always propagated in a single direction and 0 indicating

that propagation directions were uniformly distributed. Figure 4A

illustrates the time course of mean DC during the cue response

interval for the traveling waves in the frontal lobe of patient 26.

This plot indicates that the traveling waves on this cluster were

not directionally organized at the moment of cue onset, but

500 ms later, they reliably propagated anteriorly (DC = 0.34).

A different pattern was present for the traveling waves on a
Neuron 98, 1269–1281, June 27, 2018 1273
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Figure 4. Temporal Dynamics of Traveling Waves

(A) Time course of directional consistency (DC) for a traveling wave at 12.5 Hz from patient 26’s frontal lobe. Inset circular histograms indicate the distributions of

propagation directions across trials at the labeled time points.

(B) Brain plot showing the mean relative phase shift at each electrode at the time point of peak consistency for the same subject as (A).

(C) Time course of DC for a 6.2-Hz parieto-occipital traveling wave from patient 13.

(D) Brain plot showing the spatial topography of the traveling wave from (C).

(E) Time course of traveling wave DC. Bars indicate the mean DC for each region when patient is out of task.

(F) Analysis of DC slope. Positive values indicate that DC increases following cue onset. Error bars denote 95% confidence intervals. Post hoc test: **p < 0.01;

*p < 0.05; yp < 0.1.
posterior electrode cluster in patient 13 (Figures 4C and 4D),

whereby the directional organization was consistent at cue onset

and subsequently decreased.

We confirmed that these patterns were reliable by measuring

the time course of mean traveling wave DC at the group level.
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Following cue onset, traveling waves in the temporal and frontal

lobes showed increases in DC above baseline levels (Figure 4E).

Inversely, traveling waves from occipitoparietal clusters showed

decreased DC during this same period, which was significantly

different from the DC increase in the frontal and temporal lobes



(Figure 4F; ANOVA, Fð2;137Þ = 5:4, p< 0:01). Because frontal and

temporal regions specifically show increased DC following cue

onset, it indicates that traveling waves in these areas move

more consistently during memory retrieval.

After a person views a stimulus, the brain exhibits stimulus-

locked neural patterns, including phase resets of ongoing brain

oscillations and evoked activity (Rizzuto et al., 2003). Because

these can have oscillatory components (Jacobs et al., 2006),

we considered the possibility that stimulus-locked signals

affected observations of traveling waves. We identified time-

(evoked) and phase-locked signals on each electrode cluster

and then compared the timing of these signals to the time course

of the traveling waves on the same channels (Figure S4). Evoked

signals and phase resets were prominent �200–400 ms

post stimulus whereas traveling wave DC peaked later

(� 800 ms). There were no correlations between the time points

of peak DC and of the strongest evoked or phase-reset activity

(p values >0:1). These results suggest that the traveling waves

we measured were not artifacts of previously known stimulus-

locked signals.

Given that it can be challenging to measure an oscillation’s

phase when amplitude is low (Canolty et al., 2006), it is theoret-

ically possible that our ability to measure traveling waves was

diminished due to decreases in oscillatory power. We examined

this possibility by comparing the time courses of power and DC

between traveling waves from different areas (Figure S5). In the

frontal and temporal lobes, these time courses diverged dramat-

ically, indicating that the increases in DC that we observed in

these areas were not artifacts of task-induced power changes.

We next examinedwhether traveling waves correlatedwith the

efficiency of memory processing. We compared the DC of the

traveling waves on each electrode cluster between trials where

patients had fast versus slow reaction times (median split).

Overall, DC positively correlated with performance, such that

traveling waves moved more reliably in the preferred direction

for each cluster on trials with fast reaction times (Figure 5). This

effect was significantly stronger for traveling waves in the frontal

lobe (Fð2;137Þ = 4:5, p = 0:013; Figure 5A). This result is consis-

tent with the notion that frontal theta oscillations are implicated

in working memory (Jensen and Tesche, 2002; Onton et al.,

2005), although we have not ruled out the possibility that frontal

traveling waves support a broader function, such as attention.

In addition to DC, we also examined how other properties of

traveling waves correlated with performance (Table S3). On trials

in which patients had fast reaction times, traveling waves

showed increased PGD (p = 0:003) and power (p< 0:001). Trav-

eling waves did not show reliable performance-related correla-

tions with temporal frequency, spatial frequency, or propagation

speed (p values >0:5). Because the primary behavioral correlates

of traveling waves are increased DC and PGD, it indicates that

efficient cognitive processing is predicted by traveling waves

maintaining their optimal propagation direction as opposed to

moving at a faster speed or oscillating at a different temporal

frequency.

Mechanisms of Traveling Wave Propagation
We next considered the neural mechanisms underlying traveling

wave propagation. In animal model systems, identifying the
mechanisms of traveling wave propagation is an area of active

research (Ermentrout and Kleinfeld, 2001; Sato et al., 2012). At

first blush, examining this issue in humans might be even more

challenging than in animals, because human brain oscillations

are rather variable across time and frequency (Watrous et al.,

2013) and because oscillations at neighboring frequencies in hu-

mans, like alpha and theta, are often considered to have different

physiological roles (Roux and Uhlhaas, 2014). Nonetheless, we

considered the possibility that a single physiological mechanism

could support traveling waves at multiple frequencies (Lisman

and Jensen, 2013). We would be confident in identifying such

a mechanism if it could predict the properties of wave propaga-

tion across the range of traveling waves we observed, including

signals that varied in frequency and speed across trials (e.g., Fig-

ures 6A and 6B).

Two notable theoretical neural models for traveling waves are

the single-oscillator (SO) and excitable-network (EN) models

(Ermentrout and Kleinfeld, 2001). Critically, both SO and EN

models predict that traveling waves have a constant propagation

speed, because the propagation is caused by neural conduction

delays, which are constant. In contrast to the prediction of these

models, we found a positive correlation between propagation

speed and oscillation frequency—waves with faster temporal

frequencies propagated more rapidly—which seemingly rejects

these models. This positive correlation between frequency and

speed could be seen both at the trial level, by comparing propa-

gation speed and frequency across trials from the same elec-

trodes (r = 0:34, p< 0:01; Figure 6C), and at the group level, by

comparing the mean properties of traveling waves between

electrode clusters (r = 0:47, p< 10�7; Figure 6E).

A third theoretical model is a network of weakly coupled os-

cillators (WCOs) (Ermentrout and Kleinfeld, 2001), which have

been used to model traveling waves in both neural and non-

neural systems (Diamant and Bortoff, 1969; Ermentrout and

Kopell, 1984). Traveling waves appear in a network of weakly

coupled Kuramoto oscillators (Kuramoto, 1981) when their

arrangement shows two properties. First, the oscillators must

be arranged in a linear array with the strength of interoscillator

phase coupling decreasing with distance. Second, there

must be a spatial gradient in intrinsic frequency across the

array. When these two criteria are satisfied, traveling waves

appear and propagate toward oscillators with slower intrinsic

frequencies (Ermentrout and Kopell, 1984). Critically, the

WCO model predicts that oscillations with faster temporal fre-

quencies propagate more rapidly (Figures 6A–6C), because

the traveling wave is derived from coupling based on oscillatory

phase rather than fixed time shifts (Ermentrout and Kopell,

1984; Ermentrout and Kleinfeld, 2001). Because we found a

positive correlation between propagation speed and oscillation

frequency (Figures 6D and 6E), it supports the idea that human

cortical traveling waves are driven by WCOs.

Furthermore, we found that the WCO model predictions

matched the direction of wave propagation in our data. In the

WCO model, traveling waves propagate toward oscillators with

the slowest intrinsic frequencies (Ermentrout and Kopell, 1984).

Similarly, in our data, we observed a systematic decrease in

mean oscillation frequency along the posterior-to-anterior axis

(r = 0:34, p< 0:001; Figure 6F), which also followed the mean
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Figure 5. Traveling Waves and Behavior

(A) Mean difference in DC between fast and slow trials for 1 s after cue onset, separately calculated for each region.

(B) Time course of mean DC in the frontal lobe between fast and slow trials. Gray shading indicates significance (paired t tests).

(C) Brain plot showing the mean relative phase distribution across an oscillation cluster in patient 3. Inset plot shows distribution of propagation directions across

trials 340 ms after probe onset.

(D) Same as (C), for trials in which the patient responded slowly.

(E) Time course of DC for data from patient 3 that demonstrated elevated DC during trials in which the patient responded rapidly. Shading indicates p values from

a non-parametric circular direction comparison test (Fisher, 1993) between fast and slow response trials. Post hoc test: **p < 0.001; *p < 0.05; yp < 0.1.
direction of traveling wave propagation (Figure 2A). These pat-

terns indicate that human cortical traveling waves generally

propagate in a posterior-to-anterior direction because they are

coordinated by an overall decrease in intrinsic frequency from

posterior to anterior regions (Voytek et al., 2010).

Although most traveling waves showed posterior-to-anterior

propagation, some exceptional clusters reliably propagated in

other directions (e.g., Figures 1A–1D). We compared the direc-

tions of frequency gradients and propagation across clusters

to test whether these factors were correlated, as predicted by

the WCO model. If such a correlation existed, it would suggest

that the exceptional propagation directions of some traveling

waves were caused by corresponding distinctive frequency gra-

dients. Such a pattern was evident in patient 1, as seen in Figures

7B and 7C, which show that the mean directions of the wave

propagation and the frequency gradients both had anterior-to-

posterior orientations. We assessed this correspondence statis-
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tically at the group level by testing for a correlation in the mean

directions of frequency gradients and wave propagation across

clusters from all patients. Across clusters, the distribution of pair-

wise directional differences was clustered near zero (Rayleigh

test p< 0:01; Figure 7D), which indicates that the direction of

traveling wave propagation is positively correlated with the

orientation of the local oscillatory frequency gradient.

In summary, these results indicate that the WCO model pro-

vides a good model for human cortical traveling waves because

it illustrates how the direction and speed of traveling waves

can be predicted by the local oscillatory frequency gradients.

The WCO model suggests that the existence and direction of

traveling waves are modulated by two factors: the strength of

local phase coupling and spatial gradients of intrinsic oscillation

frequencies (Ermentrout and Kopell, 1984; Ermentrout and

Kleinfeld, 2001). When phase coupling is absent, there are no

traveling waves because oscillation frequencies differ between
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Figure 6. Characteristics of Traveling Wave Propagation

(A) A traveling wave on one trial for four electrodes in an oscillation cluster from

patient 1 (see Figure 1B).

(B) A traveling wave for these electrodes from a different trial when there was a

slower temporal frequency. Same format as (A).

(C) Across-trial analysis of the relation between traveling wave propagation

speed and frequency for the electrode cluster whose signals are shown in (A)

and (B). Each point indicates one trial. Black line is a least-squares fit.

(D) Histogram of within-cluster correlations between propagation speed and

frequency. Each correlation coefficient is computed separately for each cluster.

(E) Populationanalysisof the relationbetween travelingwavepropagation speed

and frequency across clusters. Each point indicates the mean frequency and

mean propagation speed of the traveling waves from a given oscillation cluster.

(F) Population analysis of the relation between traveling wave frequency and

cluster position along the anterior-posterior axis (Talairach coordinates, mm).
electrodes (Figure 7E).When phase coupling is present, traveling

waves emerge, propagating in the direction of decreasing oscil-

lation frequency (Figures 7F and 7G).

DISCUSSION

Our findings demonstrate a new potential functional role for

theta- and alpha-band oscillations by showing that they are often
traveling waves. This expands our understanding of the types of

functions that neural oscillations can support beyond phase

coding (O’Keefe and Recce, 1993), modulating synaptic plas-

ticity (Huerta and Lisman, 1995), and an array of other phenom-

ena (Klimesch, 1999; Buzsáki and Draguhn, 2004). Researchers

had previously known that oscillations modulated cortical inter-

actions in a point-to-point fashion between specific cortical

areas (Hyman et al., 2011; Liebe et al., 2012). Our results add

to this work by demonstrating that theta and alpha oscillations

can spatially and temporally organize neural processing

throughout large contiguous extents of human cortex.

Our work shows that human cortical traveling waves can be

modeled as a network of WCOs. In addition to suggesting a

mechanism underlying traveling waves, the WCO model has im-

plications for understanding traveling wave dynamics in

behavior. A key part of the WCO model is the link between local

oscillation frequency and the direction of wave propagation.

Traditionally, the frequency of a brain oscillation has been

considered to be important because it indicates the functional

role of a given oscillation. For example, oscillations in the neigh-

boring theta and alpha bands have been associated with mem-

ory and idling, respectively (Klimesch, 1999; Roux and Uhlhaas,

2014). Instead, our results suggest that—at least for the fre-

quencies and regions we examined—the precise frequency of

an oscillation could most closely relate to broad physiological

factors such as the direction of wave propagation (Lisman and

Jensen, 2013).

Going forward, it will be important to test the functional

relevance of traveling waves in more detail. One key issue is

characterizing the potential importance of the direction of wave

propagation. Although most traveling waves propagated in a

posterior-to-anterior direction, some subjects reliably showed

traveling waves with the opposite direction of propagation.

Given this variability, an important issue is whether traveling

waves with different directions support distinct functional or

physiological processes. In visual perception, there is evidence

that oscillations with anterior and posterior directions support

feedforward and feedback processing, respectively (Bastos

et al., 2015). Likewise, it will be interesting to test whether human

traveling theta and alpha waves move in different directions to

support distinct physiological processes. An alternate possibility

is that human traveling theta and alpha waves consistently sup-

port a single functional process and that the variation in propaga-

tion directions we observed reflect intersubject differences in the

anatomy or frequency gradients.

Previous research suggested several potential computational

roles for traveling waves (Ermentrout and Kleinfeld, 2001;

Muller et al., 2018). One possibility is that traveling theta and

alpha oscillations form carrier waves that represent detailed in-

formation about the current behavioral state via phase and

amplitude modulation—this pattern has been observed for

both beta and theta oscillations in the cortex and hippocam-

pus, respectively (Freeman and Schneider, 1982; Agarwal

et al., 2014). A different potential function for traveling waves

is to spatially and temporally segment the neural representa-

tions of discrete behavioral states, such that individual oscilla-

tion cycles correspond to distinct neural patterns. Such a

phenomenon was previously observed for alpha oscillations
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Figure 7. Mechanisms of Traveling Waves

(A) The instantaneous frequency distribution across

an oscillation cluster from patient 1 on one trial

(same as Figure 1B), demonstrating an anterior-to-

posterior decreasing spatial frequency gradient

(r2 = 0:67).

(B) Distribution of traveling wave propagation

directions on this electrode cluster across trials

(reproduced from Figure 1G).

(C) Distribution of the directions of the spatial fre-

quency gradients across this cluster. In (B) and (C),

black lines indicate the mean directions, thus

demonstrating a correspondence between the

directions of phase and frequency gradients.

(D) Distribution of angular differences, across

oscillation clusters, between the mean direction of

traveling wave propagation and the mean direction

of spatial frequency gradients.

(E–G) Illustration of a model of weakly coupled

oscillators (Ermentrout and Kopell, 1984) with pa-

rameters matched to our findings. Color warmth in-

creases with intrinsic frequency. When there is no

phase coupling (E), individual oscillators demon-

strate their intrinsic oscillation frequencies from 2 Hz

(anterior) to16Hz (posterior).Whenphasecoupling is

present (F and G), all oscillators have the same tem-

poral frequency (F) anda travelingwave emerges (G).
in cortex (VanRullen and Koch, 2003; Samaha and Postle,

2015) and for theta oscillations in the hippocampus (Jezek

et al., 2011; Gupta et al., 2012). It is also likely that human

cortical traveling waves correlate with the spatial propagation

of high-frequency neural patterns, including both oscillations

and neuronal spiking, owing to the phenomenon of cross-fre-

quency phase coupling (CFC) (Canolty et al., 2006; Jacobs

et al., 2007; Voytek et al., 2015). The coexistence of traveling

waves and CFC suggests that spatial bands of high-frequency

neural activity move across the human cortex during behavior

(Bahramisharif et al., 2013). It will be useful going forward

to test the potential functional role of these spatial bands

(VanRullen and Lozano-Soldevilla, 2017), such as testing the

idea that traveling waves guide the propagation of discrete

‘‘packets’’ of activity across the cortex (Freeman, 2003).

Finally, a different potential role for traveling waves is that they

could relate to detailed features of neural coding. It is notable

that several known neural coding schemes also exhibit poste-

rior-to-anterior spatial gradients, such as the representation of

spatial and temporal information in the hippocampus (Kjelstrup

et al., 2008; Lubenov and Siapas, 2009), of task rules in the fron-

tal lobe (Badre and D’Esposito, 2009), and of object abstract-

ness in the visual system (Harry et al., 2016). Traveling waves

that follow the structure of these networks could be important

for these computational processes.

Although we believe it is likely that traveling waves are rele-

vant for human cognition, there are several limitations of our re-

sults. Our data come from epilepsy patients, so it is possible

that features of our results do not generalize beyond this clin-

ical population. However, there are several reasons why we

believe our results are likely to be widely relevant. Previous

work showed that healthy subjects have the same types of

task-related theta and alpha changes that we observed here
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(Jacobs et al., 2006), including spatial patterns consistent

with the presence of traveling waves (Patten et al., 2012;

VanRullen and Lozano-Soldevilla, 2017). Further, the spatial

and temporal propagation patterns of interictal and seizure-

related activity differ dramatically compared to the theta and

alpha traveling waves we described (Liou et al., 2017). Although

the ECoG recordings that we conducted measure human brain

activity directly, it should be noted that these findings are corre-

lational because our experiments did not manipulate traveling

waves. Thus, more work is necessary to establish a potential

causal role for traveling waves. Further, our findings concern

human cortical oscillations at 2–15 Hz during wakefulness,

whereas neural traveling waves in other settings may have

different properties (Massimini et al., 2004; Rubino et al.,

2006; Sato et al., 2012).

Elements of the traveling theta and alpha waves we observed

were noted in previous studies that used different types of

methods to examine spatial characteristics of human brain sig-

nals (e.g., Patten et al., 2012; Bahramisharif et al., 2013; Alex-

ander et al., 2013, among many others). A differentiating feature

of our approach was that we identified traveling waves across

multiple regions, directions, and frequencies directly in individual

subjects at the single-trial level. Because different subjects

exhibited widely varying types of traveling waves even in the

same anatomical region, it suggests that there are substantial in-

tersubject differences in the spatial and temporal structure of

brain oscillations and traveling waves. These patterns may not

be adequately appreciated because they are difficult to capture

with typical group-average analyses.

In addition to traveling waves, the brain also exhibits other

large-scale spatial patterns of oscillations, such as spirals (Muller

et al., 2016) and ‘‘phase cones’’ (Freeman and Barrie, 2000), as

well as smaller patterns at finer spatial scales (Freeman, 2003;



Rubino et al., 2006). Together, this work suggests that there is

potential for researchers and engineers to identify important

new spatial patterns of brain dynamics across the cortical sur-

face using improved high-resolution ECoG electrodes (Viventi

et al., 2011; Khodagholy et al., 2015) rather than necessarily

requiring penetrating electrodes or single-cell recordings.

More broadly, because our results show that neuronal oscil-

lations can be synchronized across large regions of cortex,

researchers and clinicians examining noninvasive brain record-

ings should consider that aspects of their findings may result

from large neural masses (Freeman, 1975, 2003) rather than

precisely localizable point sources (Michel et al., 2004). Further-

more, whereas many electrical signals from the brain are

commonly interpreted as event-related potentials or as task-

induced power changes from local oscillators, instead it is

possible that these signals could result from traveling waves

that become transiently organized at a particular time point

and phase across a cortical region (Alexander et al., 2013).

Thus, single-trial analysis of traveling waves could be an

intriguing new direction for scalp electroencephalography and

magnetoencephalography.

In addition to demonstrating a new fundamental feature of

human brain activity, our findings could have significant prac-

tical implications. The potential for non-invasively measuring

traveling waves on a single-trial basis may be useful for the

development of brain-computer interfaces (BCI). However, for

traveling waves to be useful for BCIs, given the intersubject dif-

ferences we observed, it seems important to characterize these

patterns individually for each subject rather than averaging

across individuals. Our results suggest a way to predict the

mean direction of traveling wave propagation at the individual

subject level, by measuring the spatial gradient of a subject’s

intrinsic oscillatory frequencies. Measuring traveling waves’

instantaneous properties may provide a new tool for neural

interfacing, by tracking a subject’s attention or cognitive state

for timing stimulus presentation or neuromodulation (Ezzyat

et al., 2017).

In summary, our findings show that traveling waves of theta

and alpha oscillations comprise large spatiotemporal patterns

across the human cortex (Livanov, 1977; Freeman, 2003). The

existence of traveling waves that comply with WCOmodels indi-

cates that an important component of large-scale brain connec-

tivity are neuronal oscillations with precise spatial frequency

characteristics. Traveling waves expand our understanding of

cortical functional connectivity by showing that signal propaga-

tion across large brain networks can be rhythmic and dynamic

(Kopell et al., 2014). We hypothesize, based on the known link

between fMRI activity and the power of neuronal oscillations

(Debener et al., 2005), as well as convergent findings with cal-

cium imaging (Matsui et al., 2016), that traveling waves relate

to the slower functional connectivity signals that have been iden-

tified with fMRI (Honey et al., 2007). More broadly, our findings

emphasize that human cognition is supported by complex,

large-scale neural patterns that are exquisitely organized across

both time and space. Traveling waves may reveal one role of

large-scale brain connectivity and oscillations in cognition by

showing when behavioral information is represented and where

signals are propagating.
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Python 2.7 python.org RRID: SCR_008394

Custom MATLAB & Python scripts This paper Request from lead contact
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests should be directed to and will be fulfilled by the Lead Contact Dr. Joshua Jacobs (joshua.jacobs@

columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and Task
We examined direct brain recordings from 77 epilepsy patients who had electrodes surgically implanted to guide seizure mapping.

Individual patients were implanted with a configuration of electrodes customized according to their clinical needs, which included

both electrocorticographic (ECoG) surface grid and strips as well as depth electrodes. The spacing between neighboring electrodes

was 10 mm (center-to-center). Our data collection was a continuation of previous reported study (Jacobs and Kahana, 2009) and

recordings weremade at four hospitals (Thomas Jefferson University Hospital, Philadelphia; University of Pennsylvania Hospital Phil-

adelphia; Children’s Hospital of Philadelphia, and University Hospital Freiburg). All patients consented to having their brain record-

ings used for research purposes and the research was approved by relevant Institutional Review Boards. For the work described

here, we examined only ECoG grid and strip electrodes on the cortical surface. See Zhang and Jacobs (2015) for an analysis of trav-

eling waves in recordings from depth electrodes.

During free time between clinical procedures, these patients performed the Sternberg workingmemory task (Sternberg, 1966) on a

laptop computer at their bedside. Each trial of the task consisted of two phases. In the first phase they memorize a short list of items.

The second phase involves memory retrieval. Here they view a probe item and press a key to indicate if the probe was present in the

remembered list. Task performance was excellent, with patients having a mean accuracy of 90% andmedian reaction time of 1.16 s.

Our data analyses examined brain recordings during memory retrieval because it let us compare properties of patients’ brain signals

to their simultaneous behavioral performance (Jacobs et al., 2006).

METHOD DETAILS

Data Acquisition
The electrical activity from each electrode was recorded by a clinical recording system whose timing was synchronized with the task

computer. We pre-processed the data by downsampling the recordings to 250 Hz and performing an anatomically weighted average

re-referencing (Jacobs and Kahana, 2009). We identified the location of each recording electrode by co-registering a pre-surgical

structural magnetic resonance image (MRI) image with a post-operative computed tomography (CT) image. From these images,

we identified the location of each recording contact on the CT images and computed the electrode location in standardized Talairach

coordinates (Talairach and Tournoux, 1988).

QUANTIFICATION AND STATISTICAL ANALYSIS

Identifying Spatial Clusters of Electrodes with Similar Oscillations
Given our interest in characterizing propagating traveling waves, we designed an algorithm to identify spatial clusters of electrodes

with narrowband oscillations at very similar frequencies. This algorithm accounted for several complexities of human brain oscilla-

tions measured with ECoG signals, including differences in electrode positions across subjects and variations in oscillation fre-

quencies across individuals (Figure S2).

In this procedure, first we used Morlet wavelets (wave number 6) to compute the power of the neuronal oscillations throughout the

task at 129 frequencies logarithmically spaced from 2 to 32 Hz. To identify narrowband oscillations at each site, we fit a line to each
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patient’s mean power spectrum in log–log coordinates using a robust linear regression (Figure S1; Manning et al., 2009; Lega et al.,

2012; Zhang and Jacobs, 2015). We then subtracted the actual power spectrum from the regression line. This normalized power

spectrum provides a ‘‘whitened’’ version of the signal that removes the 1=f background signal and emphasizes narrowband oscilla-

tions as positive deflections. We identified narrowband peaks in the normalized power spectrum as any local maximum greater than

one standard deviation above the mean (Zhang and Jacobs, 2015). We also used this normalized power spectrum to estimate the

narrowband power of each traveling wave, minimizing the influence of the 1=f background signal (Figure 3B).

Next, we implemented a spatial clustering algorithm to identify oscillation clusters, which we defined as contiguous groups of elec-

trodes in each subject that exhibited narrowband oscillations at a closely neighboring frequency. First, considering a series of 2-Hz

intervals centered at 2 to 32 Hz in 1-Hz steps, we identified all the electrodes that exhibited a narrow-band oscillatory peak within that

range. We counted the number of electrodes with oscillatory peaks at each frequency window, and computed local maxima as po-

tential oscillation clusters. We then tested whether the electrodes that contributed to each local maximum comprised a spatially

contiguous group. We found all the electrodes with a peak in the 2-Hz interval around each local maximum and created a pair-

wise-adjacency matrix to judge their spatial proximity. This matrix indicated whether each electrode pair was separated by less

than 15 Talairach units (15 mm). Finally, we used this adjacency matrix to identify mutually connected spatial clusters of electrodes

by computing the connected components of this graph (Tarjan, 1972). We included in our subsequent analyses only clusters with at

least four electrodes.

A key feature of our spatial clustering algorithm is that it adapts to the specific anatomical orientation of each patient’s ECoG elec-

trode organization by utilizing Talairach coordinates rather than labeled positions from clinical recordings. Thus, our methods are

capable of identifying oscillation clusters that span multiple ECoG grids or strips (e.g., Figure 1I), rather than being limited to identi-

fying signals within regularly structured electrode arrays (Rubino et al., 2006; Lubenov and Siapas, 2009; Zhang and Jacobs, 2015).

Identifying Traveling Waves
Having identified groups of electrodes with oscillations at the same frequency, we next sought to identify traveling waves. Intuitively,

a traveling wave can be described as an oscillation that moves progressively across a region of cortex. Although many types of trav-

eling waves are possible (Ermentrout and Kleinfeld, 2001; Muller et al., 2016), we focused our analyses here on one form of this phe-

nomenon, the linear phase wave. Quantitatively, a traveling phase wave can be described as a set of simultaneously recorded neural

oscillations at the same frequency whose instantaneous phases vary systematically with the location of the recording electrode so

that the wave front can bemodeled as amoving plane. This phenomenon would appear in our dataset as an oscillation cluster whose

instantaneous relative phases exhibit a linear relationship with electrode location.

We used the following procedure to identify plane waves in the phases from each oscillation cluster. First, wemeasured the instan-

taneous phases of the signals across each oscillation cluster by applying a Butterworth filter to the signals from each electrode at the

cluster’s narrowband mean peak frequency (3-Hz bandwidth). Then we performed the Hilbert transform on each electrode’s filtered

signal to extract the instantaneous phase at each time point (Freeman, 2007). To facilitate visualization, we normalized the phase

distributions by rotating so that the smallest value is set to 0.

We used circular statistics to identify plane waves of phase progression across each oscillation cluster at each time point (Fisher,

1993). For each spatial phase distribution, we used a two-dimensional circular–linear regression to assess whether the observed

phase pattern varied linearly with the electrode’s coordinates in 2-D. In this regression, for electrode i, xi and yi represent the 2-D

coordinates and qi is the instantaneous phase. x and y are determined by projecting the 3-D Talairach coordinates for each cluster

into the best-fitting 2-D plane. We projected the electrode coordinates into a 2-D space because it simplified visualizing and inter-

preting the data, following the model that traveling-wave propagation roughly follows the surface of the cortex.

A 2-D circular–linear model has three parameters to be fit: the phase slopes a and b, which each correspond to the rate of phase

change (or spatial frequencies) in each dimension, and the phase offset w. We converted this model to polar coordinates to simplify

fitting. This polarmodel has two parameters: The angle of wave propagation a, defined as a = atan2ðb;aÞ, and the spatial frequency x,

defined as x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 +b2

p
. Circular–linear models do not have an analytical solution andmust be fitted iteratively (Fisher, 1993). We fit a

and x to the distribution of oscillation phases at each time point by conducting a grid search over a˛½0�; 360�� and x˛½0; 18� in incre-

ments of 5�and 0.5�/mm, respectively. (Note that x= 18 corresponds to the spatial Nyquist frequency of 18�/mm.) The model param-

eters for each time point are fitted tomost closelymatch the phase observed at each electrode in the electrode cluster. For each value

of a and x, the model’s predicts the phase bq i at each electrode i asbq i = ðaxi +byi +wÞmod 360�;

where a= xcosðaÞ and b = xsinðaÞ. Then we compute the goodness of fit as the mean vector length r of the residuals between the

predicted (bq i) and actual (qi) phases (Fisher, 1993),

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1

n

Xn

i = 1

cos
�
qi � bq i�

#2

+

"
1

n

Xn

i = 1

sin
�
qi � bq i�

#2
vuut :

The selected values of a and x are chosen to maximize r.
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Figure S3 illustrates the results of performing this procedure for several trials from Patient 1. The fitted model coefficients indicate

physical characteristics of any identified plane traveling wave, by showing the slope and direction of the spatial phase gradient: a is

the wave’s instantaneous propagation direction and x is it’s spatial frequency (i.e., rate of phase change over space) in �/mm.

To measure the statistical reliability of each fitted traveling wave we examined the phase variance that was explained by the best

fitting model. As in earlier work (Kempter et al., 2012), we adapted the r2 goodness-of-fit measure from linear correlation for use with

circular data. To do this, we computed the circular correlation rcc between the predicted (bq) and actual (q) phases at each electrode

(Kempter et al., 2012):

rcc =

Pn
i = 1sin

�
qi � q

�
sin

�bqi � bq�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1sin

2
�
qi � q

�Pn
i = 1sin

2

�bqi � bq�s ;

where bar denotes averaging across electrodes. We squared the result to compute r2cc. Finally, we applied an adjustment to account

for the number of fitted model parameters:

r2adj = 1�
�
1� r2cc

�ðn� 1Þ
n� k � 1

:

Here n is the number of electrodes, and k is number of independent regressors (k = 3). We refer to r2adj as phase gradient directionality

(PGD) in the main text, similar to Rubino et al. (2006)).

Classification of Traveling Waves
The procedure described above identifies the spatial gradients in a single instantaneous phase distribution. Next, we describe the

procedure we used to measure the reliability of each phase gradient across trials, based on variations in PGD and directional con-

sistency. First, we computed the median PGD for each trial and then the median for each cluster (across trials) and compared this

value with the distribution of PGDs estimated from a shuffling procedure (1,000 iterations). In each iteration of this shuffling proced-

ure, we computed a single surrogate PGD value by repeating our main PGD calculation after randomly permuting the locations of

individual electrodes within each cluster, while preserving other features of the data. We identified reliable traveling waves as elec-

trode clusters in which the actual PGD value exceeded 95% of the distribution of the 1,000 surrogate PGD values from shuffling. Due

to the spatial electrode permuting in this shuffling, this method ensured that the traveling waves we identify reliably exhibit spatially

organized plane waves, rather than other types of phase patterns with less structure (Maris et al., 2016). For clusters with only four

electrodes we used the unadjusted r2cc to assess significance in this shuffling procedure, rather than the PGD (r2adj ).

Finally, here we considered only the electrode clusters with traveling waves that propagated in a consistent direction over time. To

do this, after identifying the clusters with reliable PGD values, we computed for each cluster the distribution of propagation directions

across trials. The clusters we designated as exhibiting significant traveling waves had a non-uniform distribution of propagation di-

rections across trials, as determined by the Rayleigh test (Fisher, 1993) at p< 0:05. We calculated the directional consistency (DC) of

each cluster as the circular mean vector length of this distribution of propagation directions. Thus, a cluster with DC = 1 would have

traveling waves that always propagate in the same direction.

Statistical Assessment of Traveling-Wave Properties
We performed a series of analyses to compare the properties of traveling waves between clusters from different brain regions. To

compare directional propagation between different traveling waves, we first converted each cluster’s mean propagation direction

into Talairach coordinates. Note that this sometimes caused directional plots to appear distorted, when the 2-D plane for each cluster

was skewed relative to the Talairach axes (e.g., Figure 1F). Then, to assess regional differences in propagation directions (Figure 2B),

we grouped each cluster according to whether it was in the frontal, temporal or occipitoparietal region. When a cluster spanned mul-

tiple areas, we labeled it to the lobe that contained the plurality of its electrodes.

We computed an estimate of the radius of individual clusters by using Welzl’s algorithm (Welzl, 1991), which computes the size of

the smallest circle that contains all the electrodes in an oscillation cluster. We prefer this method, rather than reporting electrode

counts per cluster, because it partially compensates for the irregular electrode sampling across patients. However, it is likely that

this approach underestimates the size of individual oscillation clusters to some degree.

To measure the temporal frequency f of a cluster’s traveling wave on one trial, we followed f = dq=dt, where q is the average phase

at each time point, taken as the circular mean across electrodes, and t is time. We used this approach to assess each wave’s prop-

agation speed v as v = f=x, where f is instantaneous temporal frequency and x is the spatial frequency. To summarize the propagation

speed for each wave (Figure 6E), we computed the median propagation speed across all time points, excluding periods where the

model fit was poor (i.e., mean PGD <0:5; Rubino et al., 2006). Twenty one clusters had no time points with mean PGDR 0.5 and thus

were excluded from this analysis. We refined this approach tomeasure wave propagation speed on a single-trial basis, by only exam-

ining trials that clearly showed a robust traveling wave, as defined by a PGDvalue above 0.5 for at least the duration of one continuous
e3 Neuron 98, 1269–1281.e1–e4, June 27, 2018



oscillation cycle (Figure 6C). To identify task-related changes in wave DC, we computed the trend of DC over time for each traveling

wave cluster as the Pearson correlation between mean DC and time (Figure 4F).

We considered the possibility that traveling waves could relate to stimulus-locked signals by calculating, for each cluster that

showed a traveling wave, the mean phase resetting R and event-related potential (ERP) (Rizzuto et al., 2003). To identify the contri-

bution of phase resetting to each cluster’s post-stimulus activity, we calculated the phase distribution at each point in time for

the cluster’s mean frequency as in Rizzuto et al. (2003). We calculated the ERP for each cluster by first filtering the raw signal at

0.5–40 Hz, performing baseline correction (� 200–0 ms), and finally identifying the individual electrode with the largest absolute

ERP component.

To assess the role of traveling waves in behavior, for each cluster we compared the properties of traveling waves between trials

where the patient had fast or slow responses to the probe in the memory task (median split). Then, for each cluster we computed the

mean values of several properties of traveling waves separately for fast and slow trials: power, temporal frequency, PGD, spatial fre-

quency, and directional consistency (Table S3). Unless otherwise specified, we used Student’s t tests and ANOVAs to compare dif-

ferences between regions, with rejection of the null hypothesis reported after FDR correction (Genovese et al., 2002) at q = 0:05.

Model of Traveling Waves Based on Weakly Coupled Oscillators
A linear array of weakly coupled Kuramoto oscillators (Kuramoto, 1981) produces traveling waves when it exhibits two properties: (1)

weak phase coupling between neighboring oscillators and (2) a spatial frequency gradient. In this spatial frequency gradient, the

intrinsic frequency of each oscillator systematically varies with position along the array (Ermentrout and Kopell, 1984; Ermentrout

and Kleinfeld, 2001). This configuration explains the appearance of traveling waves in the digestive system (Diamant and Bortoff,

1969) and is hypothesized to generate traveling waves in the cortex (Ermentrout and Kleinfeld, 2001).

We simulated this model to demonstrate that the frequency gradient we observed in our data (Figure 7A) is feasible for producing

traveling waves that propagate in the directions we observed (Figure 1). As in earlier work (Ermentrout and Kleinfeld, 2001), we im-

plemented the Kuramoto model as

dqi
dt

=ui + e½sinðqi�1 � qiÞ+ sinðqi + 1 � qiÞ�:

where i indexes separate oscillators, ui is an oscillator’s intrinsic frequency, qi is the instantaneous phase, and e is the strength of

phase coupling between neighboring oscillators. We used this model to simulate ten oscillators, which vary in frequency from

2 Hz to 16 Hz (ui = 1:56i + 0:44 for i˛½1;10�), corresponding to a decreasing posterior-to-anterior frequency gradient from oscillator

10 to 1. Our simulations showed that when there is no phase coupling (e = 0), each oscillator exhibits independent oscillations (Fig-

ure 7E)—this resembles the spatial frequency gradients we observed in individual subjects (Figure S6) and at the population level

(Figure 6D). When coupling is positive (e[0) between nearest neighbors, the same distribution of intrinsic frequencies produces

a traveling wave that propagates in a posterior-to-anterior direction (Figures 7F and 7G). In this model the velocity of traveling

wave propagation is fairly consistent except for a slowing near the edges due to boundary conditions (Cohen et al., 1982). Under-

standing and modeling edge effects in neural traveling waves is an active area of future work.

DATA AND SOFTWARE AVAILABILITY

Raw data for this paper are available at http://memory.psych.upenn.edu/. Analysis software is available from the authors upon

request.
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