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SUMMARY
Knowing where we are, where we have been, and where we are going is critical to many behaviors, including
navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in
which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases
of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase
precession may be a general neural pattern for representing sequential events for learning and memory.
By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons
in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural
representation of locations, we show evidence for phase precession related to specific goal states. Our find-
ings thus extend theta phase precession to humans and suggest that this phenomenon has a broad func-
tional role for the neural representation of both spatial and non-spatial information.
INTRODUCTION

Our brain’s ability to link related experiences is critical to

everyday life. One crucial example is spatial navigation, which

requires awareness of individual locations and the association

between multiple locations, such as those on the same path.

Similarly, episodic memory requires the encoding of individual

events and associations between sequentially occurring events.

Because the hippocampal formation is necessary for spatial

cognition and episodic memory (Scoville and Milner, 1957;

O’Keefe, 1979; Morris et al., 1982; Burgess et al., 2002), neural

activity in this region could underlie our ability to link sequential

locations and events. Specifically, one set of theories suggests

that the spike timing of hippocampal neurons is critical for

learning the associations between events in a sequence (Hebb,

1949; MacKay and McCulloch, 1952; Greenstein et al., 1988;

Hopfield, 1995; Markram et al., 1997; Bi and Poo, 2001). Spike

timing, in turn, is thought to be coordinated by fluctuations in

the large-scale network activity that can be estimated via the

local field potential (LFP) (Bragin et al., 1995; Chrobak and Buz-

sáki, 1998; Manning et al., 2009; Canolty et al., 2010; Zanos

et al., 2012; Buzsáki et al., 2012). In this way, a consistent rela-

tionship between network oscillations and single-neuron spiking

may help to encode sequences and thus play a mechanistic role

in complex behaviors or aspects of cognition, such as memory,

that rely on relational processing (Siegel et al., 2009; Rutishauser

et al., 2010).

Critically, in rodents, neuronal activity in the hippocampal for-

mation exhibits coordination between the LFP and spike timing
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via phase precession, in which active neurons rhythmically spike

in coordination with the local theta frequency (�5–10 Hz) oscilla-

tion. As such, phase precession may be a potential mechanism

for the binding and compressing of sequential events. Phase

precession is readily observable in hippocampal place cells

(O’Keefe and Recce, 1993) and entorhinal grid cells (Hafting

et al., 2005; Reifenstein et al., 2012)—these neurons consistently

spike slightly faster than the theta oscillation as the rodent runs

through specific locations, resulting in sequences of locations

within the field being encoded at different phases of theta oscil-

lations. Consequently, as an animal crosses through consecu-

tive place fields, this phase code ensures that the corresponding

sequence of place cells fires in order within a single theta cycle

(Skaggs et al., 1996). As such, phase precession may compress

spatial trajectories on the scale of behavior into the brief time-

scale of the theta cycle that is conducive to synaptic plasticity

(Lisman and Idiart, 1995; Skaggs et al., 1996; Reifenstein and

Kempter, 2020).

In addition to representing space, there is evidence that phase

precession’s utility for binding and compressing sequential

events may be used by the brain to represent non-spatial fea-

tures of experience as well. Although phase precession is often

described in hippocampal place cells or entorhinal grid cells, it

has also been observed in a diverse range of brain areas such

as ventral striatum (van der Meer and Redish, 2011), subiculum

(Kim et al., 2012), basal forebrain (Tingley et al., 2018), and

medial prefrontal cortex (Jones and Wilson, 2005). Critically,

recent work in rodents has reported phase precession indepen-

dent of location, encoding elapsed time during rapid eye
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Figure 1. Virtual environment and hippocam-

pal local-field potential during task

(A) Overhead view of task environment. Red

squares denote locations of possible goal locations.

(B) Examples of raw LFP data from rodent (publicly

available dataset [Mizuseki et al., 2013]) and human

hippocampus.

(C) Joint distribution depicting the peak frequency

and peak height of LFP power spectra (PSD)

measured from individual rodent (blue) and human

(red) hippocampal electrodes. Different electrodes

in the rodent hippocampus exhibit highly stereo-

typed peaks. Human hippocampal recordings

exhibit spectral peaks that are significantly smaller

in height, and at significantly lower and broader

frequencies (p < 4 3 10�4).

See also Figure S1.
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movement (REM) sleep (Harris et al., 2002), wheel-running (Pas-

talkova et al., 2008), jumping (Lenck-Santini et al., 2008), fixation

(Takahashi et al., 2014), onset of task-relevant stimuli (Aronov

et al., 2017; Terada et al., 2017; Robinson et al., 2017) and

task context (Tingley et al., 2018). The widespread prevalence

of phase precession suggests that this phenomenon has a

more general role beyond representing the current spatial loca-

tion, and it could be relevant for building neural representations

in many regions to support diverse aspects of cognition,

learning, and memory.

Many theories suggest a fundamental role for phase preces-

sion in neural coding (O’Keefe and Recce, 1993; Burgess

et al., 1994; Lisman, 2005; Jaramillo and Kempter, 2017), yet

phase precession has almost exclusively been studied in ro-

dents. To examine the prevalence and importance of phase pre-

cession in humans, we analyzed simultaneous single-neuron

and LFP activity from neurosurgical patients as they performed

a virtual spatial memory task and examined the patterns of

spike-LFP interaction. Here, we describe spatial phase preces-

sion in humans analogous to that observed in navigating ro-

dents. We also describe evidence for phase precession related

to the coding of non-spatial variables, in which neurons tran-

siently spike with a rhythm faster than the theta oscillation during

trajectories to specific goals. Overall, our findings extend pre-

cession to humans and demonstrate its potential use for encod-

ing both spatial and non-spatial features of experience.

RESULTS

Spatial phase precession in hippocampus and
entorhinal cortex during navigation
We analyzed recordings of neuronal spiking from 1,074 neurons

in the hippocampus, entorhinal cortex, parahippocampal gyrus,

anterior cingulate cortex, orbitofrontal cortex, and amygdala of

13 neurosurgical patients undergoing clinical treatment for

drug-resistant epilepsy. During recordings, subjects performed

a goal-directed navigation task in a 2D virtual environment on a

laptop computer (Jacobs et al., 2010; Miller et al., 2015) (see
STAR Methods). The virtual environment contained six goal

stores surrounding the perimeter of a square track, with the cen-

ter of the environment obstructed by buildings. Subjects were

able to travel around the track in either clockwise or counter-

clockwise directions (Figure 1A).

Given our interest in phase coding, we first characterized the

prevalence of theta oscillations in the human hippocampus

and compared their properties to those seen in rodents,

leveraging a publicly available dataset (Mizuseki et al., 2009a).

Compared to rodents, human hippocampal theta spanned a

significantly broader range of frequencies (p < 43 10�4, Levene

test), with significantly smaller, lower-frequency peaks in the po-

wer spectrum (p < 3 3 10�8, Wilcoxon rank-sum tests) (Figures

1B, 1C, and S1A). Because human theta appears to span both

low and high frequencies (Goyal et al., 2020) and because phase

coding may be robust to changes in theta frequencies (Petersen

and Buzsáki, 2020), we assessed phase precession with respect

to oscillations within a range of LFP theta frequencies (2–10 Hz)

(Figure 1C). Identifying phase precession in this broader range of

frequencies would demonstrate that precession might gener-

alize to brain regions and species that exhibit heterogeneous

low-frequency signals, in line with recent work identifying phase

precession relative to non-rhythmic (2–10 Hz) LFP in bats (Eliav

et al., 2018) and shorter theta bouts in humans and non-human

primates (Watrous et al., 2013; Jutras et al., 2013; Killian

et al., 2012).

To assess phase precession, we first identified each neuron

whose firing was modulated by the subject’s position in the

virtual environment. We labeled the clockwise (CW) and

counter-clockwise (CCW) navigation periods and then used a

permutation testing procedure to identify 296 spatially modu-

lated neurons that fired significantly more when subjects moved

through particular locations in one or both of these directions

(Jacobs and Kahana, 2010), after correcting for multiple compar-

isons (see STAR Methods). Because phase precession in ro-

dents is most predominant near the place-field center (Souza

and Tort, 2017) and on short trajectories (Reifenstein et al.,

2014), we tested for phase precession during short trajectories
Cell 184, 3242–3255, June 10, 2021 3243
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Figure 2. Examples of spatial phase precession in human hippo-

campus and entorhinal cortex

(A) Schematic illustrating our method for selecting spikes near peak firing bin

(STAR Methods). For each spatially modulated neuron we analyzed phase

precession using spikes that occurred early (red), at the midpoint (black), and

late (blue) in clockwise (CW) and counter-clockwise (CCW) trajectories through

the center of the firing field. Numbers here denote position relative to the center

of the field, in virtual units.

(B) Spike-triggered average (STA) LFP (reconstructed from phase) for early,

midpoint, and late trajectory spikes from one neuron.

(C) Schematic of spike phase as a function of distance from center spike during

a trajectory through the field, showing phase precession as a negative pro-

gression of phase-by-position.

(D) Three examples of spatial phase precession. Each row shows an individual

neuron. Left: firing rate heatmap. Text label indicates average firing rate in peak

firing bin, which is noted with an asterisk, as well as spatial information (bits/

spike). Brighter colors denote higher firing rates. Dotted lines indicate

maximum radius around field in which spiking was assessed. Arrows in the

center of the heatmap indicate the navigation direction.Middle: spike phase as

a function of location relative to the field center. Spike phases are duplicated

vertically to enable visualization of circular-linear regression (red). Rho in-

dicates circular-linear regression coefficient. Right: statistical assessment of
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through the field center, defined as the peak firing location for

each neuron (Figures 2A–2C).

We observed that some of the spatially tuned neurons showed

spiking at progressively earlier phases of the theta oscillation

during individual trajectories through their firing field (Figures

2D, S2A, and S2B). To assess if this was a consistent pattern

across trajectories, we leveraged the fact that during phase pre-

cession, spikes at later positions in the trajectory should occur at

earlier phases, manifesting as a negative correlation between

spike-phase and position (O’Keefe and Recce, 1993). In this

way, spiking at different phases of the LFP would correspond

to different relative positions along the path to a neuron’s firing

field center (Figures 2A–2C). We tested for this pattern by

measuring the correlation (Kempter et al., 2012) between

spike-phase and position using circular statistics (Fisher, 1993)

and a shuffle-based permutation procedure (see STAR

Methods).

By performing this procedure across all of the identified

spatially tuned neurons, we report evidence of phase precession

in humans. Figure 2D shows three examples of neurons in the

hippocampus and entorhinal cortex whose spiking exhibited sig-

nificant phase precession during navigation at particular spatial

locations (see Figures S3A and S3B for additional examples).

Each of these neurons increased their firing in a specific region

of the environment (Figure 2D, left). As a person approached

the center of that region, the neuron initially spiked at late phases

of the 2–10 Hz LFP but as they continued their trajectory through

the center and past it, spikes occurred at progressively earlier

phases (Figures 2D, middle, and S3C). This change in spike

phases between early positions and late positions is character-

ized by a significant negative phase-position correlation (Fig-

ure 2D, right).

After testing all spatially tuned neurons in our dataset for phase

precession, we found that precession was widespread, with

12% (35/296) of neurons exhibiting this phenomenon (Table

S1), which is well above chance (p < 3 3 10�6, binomial test)

(Figures 3A and S3D). Of these 35 neurons, 22 exhibited

uni-directional spatial tuning and precession and 10 exhibited

bi-directional spatial tuning and precession. The remaining three

neurons exhibited uni-directional precession in one location and

bi-directional precession in another. A smaller proportion of neu-

rons (22/296) exhibited a positive correlation between position

and phase (Wang et al., 2020) (p = 0.06, binomial test).

Notably, we specifically observed significant proportions of

spatially modulated cells exhibiting spatial phase precession in

the hippocampus and entorhinal cortex (p < 0.002, binomial

test) (Figure 3B). Phase-precessing neurons exhibited an

average circular-linear correlation coefficient of �0.26 ± 0.09

and an average slope of�1.36 ± 0.8 radians/VR-unit (Figure 3C),

suggesting an average phase range of 1.8p radians across the

entire field. Phase-precessing neurons’ average in-field firing

rate was 4.9 ±1.7 Hz (Figure 3D), and they had spatial firing fields
circular-linear regression rho using surrogate distribution of circular-linear

regression rho values generated by permutation of spike phases. Red line

indicates value of real data. Dark gray shading indicates 95th percentile of

surrogate distribution.

See also Figures S2 and S3.
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Figure 3. Prevalence and characteristics of spatial phase precession in humans

(A) Percentage of spatially modulated neurons that exhibit phase precession during trajectories through the firing field (filled bar). Grey bars show control analyses

of precession relative to alternative locations, or as a function of time, not position, during spiking episodes (see Figure S4). Black dotted line denotes chance.

Solid black line indicates 95% binomial confidence interval. Asterisk indicates significant proportion of spatially modulated cells exhibiting phase precession

during trajectories through the firing field (p < 3 3 10�6, binomial test).

(B) Percentage of spatially modulated cells across regions (HPC, hippocampus; EC, entorhinal cortex; Amyg, amygdala; ACC, anterior cingulate cortex; OFC,

orbitofrontal cortex; PHG, parahippocampal gyrus). Asterisk indicates significant proportion of cells exhibit phase precession (p < 0.002, binomial test).

(C) Distributions of circular-linear correlation-coefficients between spike-phase and location and regression slopes for neurons with significant negative (red) and

positive (green) correlations. Gray dots denote non-significant correlations.

(D) Distribution of average firing rate of peak firing bins in which phase precession was observed. Black line denotes the mean of the distribution.

(E) Prevalence of phase precession across the environment. Colors indicate percentage of firing fields in each bin that exhibited precession.

See also Table S1.
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throughout the environment (Figure 3E). To test whether spatial

phase precession was consistent across an entire behavioral

session, we separately computed the phase-position correlation

for the first and second halves of the session and found no sig-

nificant difference in correlation coefficient or slope between

halves (p > 0.4, paired t test), with significant negative correlation

coefficients in each half when measured individually (p < 0.002,

one-sample t tests). We found neurons demonstrating spatial

phase precession in all 12 of the subjects with spatially modu-

lated neurons. Overall, these results thus demonstrate the exis-

tence of phase precession as a neural code for spatial position

in humans during virtual navigation. Specifically, the theta

frequency (2–10 Hz) and regions involved (hippocampus and

entorhinal cortex) suggest that this phenomenon in humans is

analogous to the phase precession found in rodent place and

grid cells.

These analyses specifically tested for phase precession in the

location in the virtual environment where the cell was most

active. To confirm that precession indicated a spatial phase

code relative to these specific locations, we tested two alterna-

tive explanations for our results. We assessed whether preces-

sionwas equally prevalent at randomly selected spatial locations

(in which the neuron was sufficiently active), or that precession
was actually measuring the advance of spike phase according

to elapsed time (Figures S4A and S4C; STAR Methods). Neither

alternative model identified significant proportions of phase-pre-

cessing cells, and these models resulted in the identification of a

smaller number of cells as compared to our primary analyses

(c2 = 20.6, p < 4 3 10�5, chi-square test) (Figures 3A, S4B,

and S4D). These results indicate that human phase precession

occurs more strongly at locations that are associated with

elevated firing rates, and that phase precession in spatially tuned

neurons during navigation is more closely tied to location than

elapsed time. Furthermore, we also found that the position–

phase correlation was significantly stronger than the correlation

between rate and phase (Huxter et al., 2003;Monaco et al., 2019)

(p < 2 3 10�8, paired t test), suggesting that spike phase more

strongly encoded position than the instantaneous firing rate

(Figure S3E).

Evidence for phase precession without spatial coding
Although phase precession has been observed most readily

relative to specific spatial locations, there is also evidence for

precession with respect to non-spatial behaviors and stimuli (Ar-

onov et al., 2017; Harris et al., 2002; Pastalkova et al., 2008;

Lenck-Santini et al., 2008; Tingley et al., 2018) and in regions
Cell 184, 3242–3255, June 10, 2021 3245
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outside the hippocampal formation (Jones andWilson, 2005; van

der Meer and Redish, 2011). These findings suggest that phase

precession could be a more general phenomenon that the

brain uses to represent diverse types of consecutive, relevant

stimuli/states using different frequencies or phases of an

oscillation. To examine this possibility, we used a broader analyt-

ical method to identify the non-spatially tuned neurons that

exhibited phase precession without reference to a specific posi-

tion. To do this, we measured each neuron’s rhythmic frequency

of spiking in comparison to the local theta oscillation (Geisler

et al., 2007; Harvey et al., 2009). Identifying a consistent pattern

of faster-than-LFP rhythmic spiking would indicate the presence

of a precession-like pattern of LFP-coordinated spiking that

could bind and compress sequential, non-spatial features of

the task—just as spatial phase precession is theorized to do

for locations (Bush and Burgess, 2020; Reifenstein and Kempter,

2020).

We identified neurons that showed rhythmic spiking at a fre-

quency faster than the theta oscillation by using a phase-un-

wrapping method that has identified this pattern both in animals

with very stereotyped, 8-Hz theta such as rats (Mizuseki et al.,

2009a; Geisler et al., 2010; Kim et al., 2012) and mice (Middleton

et al., 2018; Bourboulou et al., 2019), as well as in animals with

human-like theta that appears at a range of frequencies, such

as bats (Eliav et al., 2018) and non-human primates (Stewart

and Fox, 1991; Killian et al., 2012; Jutras et al., 2013). In brief,

in this method, we first measured the theta phase estimate for

each spike from the concurrent 2–10 Hz LFP and ‘‘unwrapped’’

the circular phase time series so that it increased linearly. We

then measured the spike-phase spectrum, which we defined

as the power spectral density of the time series of unwrapped

spike phases (STARMethods). In contrast to conventional spec-

tral analysis that measures the frequency of a signal relative to

absolute time, the spike-phase spectra reflects the relative fre-

quency of rhythmic spiking compared to the progression of un-

wrapped phase of the LFP oscillation. If a spike-phase spectra

showed a peak at a relative frequency >1.0, it would indicate

that the frequency of a neuron’s rhythmic spiking was faster

than that of the concurrent oscillations in the LFP, and thus the

phase of this neuron’s spiking exhibited precession relative to

the LFP (Figure 4A). Importantly, this method ensures that a

consistent relationship between the spiking frequency and LFP

frequency can be identified even if the LFP shifts in frequency

or amplitude, and even though neuronal spike times alone may

not show a clear oscillation (Figure S1B), as is the case in hu-

mans and bats (Eliav et al., 2018). We validated this method

by applying it to data from rodent CA1 and identifying a consis-

tent >1.0 relative frequency (Figures S1C and S1D), consistent

with the spatial phase precession observed in these neurons

(Mizuseki et al., 2009a).

To assess whether precession-like rhythmic spiking was

evident for non-spatially tuned cells, we used this method to

analyze the spiking of the 744 neurons that were active during

the task but did not exhibit significant spatial tuning. Figure 4B

depicts an example neuron that we identified with this method

that showed significant precession. This analysis found that the

rhythmicity of this cell’s spiking occurred at a frequency that reli-

ably exceeded the frequency of the LFP (right panel), although no
3246 Cell 184, 3242–3255, June 10, 2021
consistent rhythm is apparent from the spike timing alone (left

panel). Using this method, we found that 20% of non-spatially

tuned neurons (146/744) showed a significant relationship be-

tweenneuronal spiking frequency andLFP frequency (Figure 4C),

with 90 of these neurons showing evidence of precession by hav-

ing a relative frequency >1.0 (Figure 4D). Precession-like rhyth-

mic spiking was thus significantly more prevalent than expected

by chance (p < 7 3 10�18, binomial test) (Figure 4E). The set of

neurons that showed precession was also larger (c2 = 8.8,

p = 0.003) and involved higher mean firing rates (p = 0.04) than

the set of cells with a relative spike frequency %1.0. None of

the 90 neurons exhibiting precession had a mean firing rate

exceeding 10 Hz, suggesting that these cells were not theta-

modulated interneurons (‘‘theta cells’’) (Ranck, 1973).

We performed a control analysis (Figure S4C) to rule out the

possibility that these effects could be explained by the absolute

spike timing relative to elapsed clock time, although this was un-

likely given the relative lack of intrinsic rhythmicity in the spiking

measured by clock time (Figure S1B). This analysis confirmed

that most of these neurons show phase precession only when

spiking is measured relative to the instantaneous ongoing oscil-

lation rather than absolute elapsed time (Petersen and Buzsáki,

2020) (Figure 4E). These results illustrate how the frequency vari-

ability of human hippocampal theta (Goyal et al., 2020) may

diminish traditional measures of phase precession, and demon-

strate the potential for phase precession in neurons that are not

spatially tuned. We next sought to test whether this new non-

spatial precession pattern might vary behaviorally in relation to

non-spatial, higher-level features of the task, such as prospec-

tive goals.

Evidence for phase precession during trajectories to
specific goals
Having shown that non-spatially tuned neurons can exhibit

phase precession, we next tested whether this was a tonic

pattern (Harvey et al., 2009) or, alternatively, one that emerged

selectively to code for specific stimuli or behavioral states.

Specifically, recent work has shown that human hippocampal-

cortical networks represent goals and their intermediate loca-

tions (Brown et al., 2016); furthermore we found previously that

this task elicits distinctive patterns of rate- and phase-coding

for goals (Watrous et al., 2018). Therefore, we assessed whether

phase precession emerged selectively during trajectories to spe-

cific goals in service of binding those trajectories for learning and

memory.

During each trial of this task, the subject was cued to travel to a

randomly selected goal location (Figure 5A). We found that some

neurons specifically showed phase precession only during travel

to particular goals. Figure 5B shows an example of a neuron

whose spiking shows phase precession during navigation to

goal 2, but not the other goals. This effect is evident in the

spike-phase autocorrelogram for that goal, which shows that

during travel to goal 2, rhythmic spiking occurs at a frequency

slightly faster than the ongoing 2–10 Hz LFP. To systematically

test for goal-state phase precession, we measured the spike-

phase spectrum during trajectories to each goal and compared

these spectra between goals, using a permutation procedure

and correcting for multiple comparisons across goals (Figure 5C;
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Figure 4. Spike-phase spectra reveals precession-like pattern in non-spatially tuned neurons

(A) Schematic illustrating analysis of rhythmic spiking frequency relative to LFP oscillation (STARMethods). Left: envelope of autocorrelation of spike times (gray),

with dotted lines at 200-ms intervals. Middle: envelope of autocorrelation of unwrapped spike phases, using spikes occurring during the oscillation (orange).

Dotted lines indicate one cycle of ongoing LFP in 2–10 Hz band. Red arrows indicate peaks in autocorrelation, which occur progressively earlier than cycles of

ongoing LFP. Right: Fourier transform (FFT) of autocorrelation function yields power spectral density(PSD) showing cell spiking frequency relative to ongoing LFP

frequency. The spike-phase modulation index (MI) is visualized here as the ratio of the spectral peak height to power at all other relative frequencies. This value is

compared to a null distribution of MI values generated by shuffling spike phases in each cycle.

(B) Left: spike time autocorrelation showing little evidence of theta modulation, which could not be fit with decaying sine wave function (STAR Methods). Right:

spike phase autocorrelation (orange) showing cell oscillating slightly faster than ongoing LFP (cycles of 2–10 Hz LFP indicated by dotted line). Black line depicts

envelope fit using decaying sine wave function (R2 = 0.84). Red arrows indicate peaks in autocorrelation, which occur progressively earlier than cycles of ongoing

LFP (and faster than in A). Inset shows spike-phase spectra.

(C) Spike-phase modulation index (MI) of spike-phase spectral peaks for significant versus non-significant neurons.

(D) Distribution of relative frequencies for neurons exhibiting significant MI. Values to the right of the black line indicate that the rhythmic spiking frequency slightly

exceeded the LFP frequency.

(E) Percentage of non-spatial cells that exhibit precession-like spiking relative to LFP phase, compared to cell’s exhibiting precession relative to time in a spiking

episode. Black dotted line denotes chance level. Solid black line indicates 95% binomial confidence interval. Asterisk indicates significant proportion of cells

(p < 7 3 10�18, binomial test).

See also Figure S1.
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STAR Methods). Figure 5D depicts two example neurons that

show this pattern, from the cingulate and amygdala of two

different subjects (see Figure S5 for additional examples). These

neurons exhibited rhythmic spiking at faster frequencies than the

ongoing LFP while the subjects were en route to specific goals.

Critically, this rhythmic spiking was goal-specific and did not

appear during trajectories to other goals. These patterns were

thus examples of phase precession for a particular goal-state,

similar to phase precession in a place field.

We applied this method to the 448 neurons that were suffi-

ciently active during each goal. We excluded spatially tuned
neurons, to ensure that spatial phase precession did not

confound the analysis. We found a population of neurons ex-

hibiting a significant pattern of faster-than-LFP rhythmic spiking

during trajectories to at least one goal (Figure 6A), across a

range of relative frequencies (Figure 6B). Overall, 11% of the

neurons we analyzed (49/448) exhibited significant goal-state

precession (Table S2), with at least one neuron exhibiting

goal-state phase precession in 10/13 subjects. We examined

the specificity of goal-state precession, and found that a major-

ity of these neurons only exhibited significant precession during

trajectories to one goal (Figure 6C); furthermore, other patterns
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Figure 5. Goal-state phase precession
(A) Schematic of task environment. Labels indicate goal locations.

(B) Spike-phases during navigation to different goals for example neuron. Top: unwrapped spike-phase autocorrelograms for each goal. Black line indicates fit of

decaying-sine wave function. Spiking frequency transiently exceeded LFP frequency only during navigation to goal 2. Bottom: spike-phase as a function of

duration within each goal epoch. Black line indicates circular-linear regression fit.

(C) Schematic of method for assessing goal-state phase precession. If a neuron exhibited a significant spike-phase spectral peak at relative frequency exceeding

1 (following multiple comparisons correction), and this effect was significantly stronger than that observed during trajectories to other goals, then this neuron was

classified as exhibiting goal-state precession (STAR Methods).

(D) Example neurons exhibiting phase precession during navigation to specific goals. Left: spike-phase spectra depicting frequency of neuronal spiking relative to

ongoing LFP. Asterisk denotes spectral peaks that were significant and significantly different from other spike-phase spectra for other goals. Gray lines denote

non-significant goals. Right: spike-phase autocorrelograms during navigation to each goal (significant goal epochs depicted in color). Text indicates the p value

for significance tests described in C).

See also Figure S5.
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goal-state phase precession in neurons that

are not spatially tuned

(A) Spike-phase modulation index (MI) of spike-

phase spectral peaks for significant versus non-

significant goals.

(B) Peak spike-phase PSD frequency for all goals for

which a neuron exhibited a significant MI in the

spike-phase spectra. Values to the right of the black

line indicate that the neuronal frequency slightly

exceeded the LFP frequency, indicating precession.

(C) Number of goals per neuron for which preces-

sion was observed. Most neurons exhibited pre-

cession during only one goal.

(D) Percentage of non-spatial cells in each region

that exhibited goal-state phase precession. Aster-

isks indicate significant proportion of cells (p < 0.02,

binomial test). Solid black line indicates 95% bino-

mial confidence interval.

(E) Distribution of Cohen’s d for the difference in 2–

10 Hz power (left) and firing rate (right) between

trajectories to goals showing precession versus

those that did not. Black dotted lines indicate effect

size of ±0.8.

(F) Analysis of overlap between goal-state phase

precession and rate coding for goals.

See also Figure S6 and Table S2.
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of rhythmic spiking (equal to or slower than theta frequency)

were also absent during trajectories to other goals. Next, we

found that only 4/49 neurons exhibiting goal-state precession

showed consistent spike-phases across the start or end of

goal trajectories (as in Figure 5B), suggesting that the spike-

LFP frequency difference may be more important for encoding

information than specific phases. Goal-state phase precession

was present at significant levels in anterior cingulate, orbito-

frontal cortex, amygdala, and hippocampus, but not parahippo-

campal gyrus or entorhinal cortex (p < 0.02, binomial test)

(Figure 6D).

To confirm that goal-state precession was stable across an

entire behavioral session, we computed the correlation be-

tween the goal-specific spike-phase spectra for the first and

second halves of the session and found they were significantly

positively correlated (r = 0.36 ± 0.4; Figure S6A; p = 0.0001, t

test). We also performed a series of control analyses to test the

possibility that our observation of precession for specific goal

states was confounded by between-goal differences in LFP po-

wer or neuronal firing rate (Figure 6E). Indeed, neither example

neuron in Figure 5 exhibited increased firing rates during goals

that showed precession, which suggests that goal-state pre-

cession was independent of goal-specific firing rate increases

(Watrous et al., 2018). Neurons exhibiting goal-state precession

had lower mean firing rates than those that exhibited spatial

phase precession (p < 3 3 10�4). Furthermore, only 17 of the

49 neurons that showed goal-state precession also showed
increased goal-specific firing rate in-

creases (p < 0.05, one-way ANOVA),

and only 2 of 17 of these neurons showed

precession and a firing rate increase for
the same goal (Robinson et al., 2017) (Figure 6F). Next, we

tested whether subject performance on different goals might

be responsible for our results (i.e., whether precession might

occur when subjects perform more efficient navigation). How-

ever, we measured subject’s performance on each goal

(STAR Methods) and found no significant difference in naviga-

tional performance between goals that elicited precession and

those that did not (Figures S6B and S6C).

We considered the possibility that a neuron might show

goal-state precession if that neuron had a place field that

only emerged during trajectories to the goal in question.

Spatial phase precession through that field might explain any

observation of goal-state precession. Therefore, we analyzed

whether the neurons that showed goal state precession also

showed spatial tuning specifically on trajectories to that

same goal. We found that this was only the case for 6/49 cells,

suggesting that spatial phase precession could not generally

explain our finding of goal-related precession. Furthermore,

goal-state precession did not differ in strength depending on

whether subjects were near or far from goals (p = 0.37, paired

t test), demonstrating that this effect was fairly consistent

throughout navigation to the goal. Therefore, it is likely that

goal-state precession represents a distinct neural process

from spatial phase precession. Overall, because differences

in theta power, firing rate, and behavior did not account for

our results, our findings indicate that non-spatial phase pre-

cession selectively occurs during trajectories to specific goals
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and may also support the representation of non-spatial,

sequential features of behavior.

DISCUSSION

Understanding the nature of the neural code is a fundamental

challenge in neuroscience. Our findings show that neurons in

the human brain spike in rhythm with local network oscillations

to represent spatial position and non-spatial states, in addition

to the well-established code based on firing rate. Specifically,

we demonstrate the presence of phase precession in humans

performing a virtual spatial memory task. We provide evidence

for rodent-like spatial phase precession in human hippocampus

and entorhinal cortex, in which spatially tuned neurons spike at

earlier phases of theta (2–10 Hz) LFP oscillations as subjects

moved through the putative place field center. We also provide

evidence for the existence of non-spatial, goal-state phase pre-

cession, which occurs transiently during trajectories to specific

goals. These findings thus extend phase precession beyond ro-

dents and beyond spatial location, highlighting its potential as a

more widespread neuronal mechanism for coordinating spike

timing during behavior and cognition.

The spatial phase precession we observed in humans bears

important similarities to phase precession in rodents. We found

spatial phase precession most predominantly in hippocampus

and entorhinal cortex, where place and grid cells, respectively,

are canonically found (O’Keefe, 1979; Hafting et al., 2005; Ek-

strom et al., 2003; Jacobs et al., 2013). This suggests that the

spatial phase precession we observed may be driven primarily

by place and grid cells, as it is in rodents, although it is possible

that our findings of precession were also associated with neu-

rons with more complex spatial firing fields compared to place

or grid cells (Hargreaves et al., 2005; Deshmukh and Knierim,

2011). One key difference between these results and those in ro-

dents is that some spatially tuned neurons in our dataset ex-

hibited activity outside of the firing field, unlike the activity of

many rodent place cells where out-of-field spiking is less

frequent. This difference in spatial specificity might explain why

the tuning of human phase precession is weaker than that

observed in many rodent studies and might be due to difference

in ethology or physiology between species. Alternatively, a

different possible explanation for certain aspects of our results

is that phase precession may simply be less precise or prevalent

in virtual reality environments (Aghajan et al., 2015). There are

also other distinctive features of our results. Notably, we found

a near-significant proportion of positive phase-position correla-

tions (or ‘‘procession’’), which had very recently been described

in rodents (Wang et al., 2020). Finally, human theta oscillations

often appear at a slower and broader range of frequencies

compared to those seen in rodents (Jacobs, 2013; Watrous

et al., 2013; Goyal et al., 2020), which may explain why phase

precession in humans was not previously observed. For this

reason, we specifically assessed phase precession relative to

the broader range of theta frequency (2–10 Hz) fluctuations of

the LFP, in line with the recent discoveries of phase precession

in bats (Eliav et al., 2018) and marmosets (Courellis et al.,

2019)—two animals with similarly heterogeneous low-frequency

field potentials. As a result of these differences in the properties
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of phase precession between species, it will be important for

future studies to determine whether phase precession plays a

different functional role in humans than in rodents.

Our discovery of spatial phase precession bears a potentially

interesting relationship to the precession observed relative to

non-rhythmic fluctuations in bats (Eliav et al., 2018). Although

many of the electrodes included in this study exhibited (small)

spectral peaks, it is possible that non-rhythmic fluctuations in

the 2–10-Hz band contributed to the phase estimates in partic-

ular epochs, suggesting that human precession shares features

with the forms of precession observed in both rodents (relative to

oscillatory theta) and bats (relative to non-rhythmic fluctuations).

This might hold important mechanistic implications, as only

certain models of phase precession are compatible with a non-

rhythmic excitatory drive to spatially tuned neurons (Mehta

et al., 2002; Eliav et al., 2018). In fact, high-amplitude theta rhyth-

micity may not be necessary for phase precession at all; recent

work in rodents has demonstrated that the theta phase code re-

mains consistent even as theta frequency is altered (Petersen

and Buzsáki, 2020). Similarly, rodents continue to show phase

precession even when LFP theta power and theta-modulated

spiking are reduced (Royer et al., 2010; van der Meer and Re-

dish, 2011; Schlesiger et al., 2015), and recent evidence has

emerged in rodents of slower oscillations like those included in

this work (<4 Hz), which may exhibit phase precession (Safaryan

andMehta, 2020; Schultheiss et al., 2020). It is thus likely that the

spatial phase precession we observed shares features with the

precession observed both in rodents and in bats, despite differ-

ences in theta range and rhythmicity. Future experiments care-

fully manipulating theta power and frequency in rodents while

measuring phase precession may be able to further link the pre-

cession observed here, and in bats, with that observed in

rodents.

Phase precession has predominantly been observed during

place- or grid-cell spiking (Moser et al., 2008). However, recent

work has discovered the presence of phase precession relative

to sound (Aronov et al., 2017; Terada et al., 2017), odor (Terada

et al., 2017), time in an episode (Harris et al., 2002; Pastalkova

et al., 2008; Lenck-Santini et al., 2008), task progression

(Tingley et al., 2018), and REM sleep (Harris et al., 2002). Recent

work also suggests that time cells in the human MTLmay exhibit

phase precession during verbal memory encoding (Umbach

et al., 2020). These findings highlight the potential generaliz-

ability of phase precession to non-spatial domains. In these

instances, phase precession may enable the encoding of any

successive stimuli or states, with the progression of phases

binding a myriad of non-spatial sequences together for learning.

By leveraging the idea that any variable may be encoded in spike

phase if the frequency of spike rhythmicity exceeds the fre-

quency of the local LFP oscillation (Mizuseki et al., 2009a;

Bush and Burgess, 2020), we showed that phase precession

also occurs with respect to behavioral states other than inhabit-

ing a specific physical location—in this case, exclusively during

trajectories to specific goals. The fact that this result is so spe-

cific, only showing up for a subset of goals for each neuron,

might suggest an ensemble temporal code responsible for en-

coding all of the goals in the task (Wikenheiser and Redish,

2015; Meshulam et al., 2017).
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The goal-state phase precession we observed was largely in-

dependent of rate coding for goals, which has been described

previously in human studies (Ekstrom et al., 2003; Watrous

et al., 2018; Qasim et al., 2019). The independence of goal-

state rate and phase coding is consistent with the observation

in rodents that phase precession can appear for specific

behavioral states even in the absence of concurrent firing-

rate changes (Robinson et al., 2017). These findings support

the theory that phase precession is used by the brain to signal

behavioral states independent of firing-rate changes (Huxter

et al., 2003; O’Keefe and Burgess, 2005). A challenge for future

work is to understand the specific features of this phenomenon,

such as the precise relationship to spatial precession, and

the role of different phases within goal-state precession. For

example, goal-state precession could involve multiple cycles

of phase precession, in contrast to the shorter ranges typically

exhibited during spatial phase precession. If so, one hypothesis

is that goal-state phase precession represents a novel kind of

frequency-code in the brain, where absolute phases do not

encode specific stimuli; instead, shifting LFP frequency can

modulate spike-time intervals for synaptic plasticity without

affecting the spike-phase, consistent with a variety of computa-

tional models of phase precession (Burgess, 2008; Bush and

Burgess, 2020), and broader cognitive function (Wutz et al.,

2018). Alternatively, spike phases during goal-state precession

may help track a person’s ‘‘episodic’’ position within a goal-

seeking event. This would align with work in rodents showing

phase-precession in ‘‘episode’’ or ‘‘time’’ cells when a rodent

runs on a treadmill with a goal (Pastalkova et al., 2008) but

not without a goal (Hirase et al., 1999), as well as evidence

from human imaging showing that hippocampal and entorhinal

cortex population activity correlates with distance to goal (Ho-

ward et al., 2014). Furthermore, goal-state phase precession

may relate to the phase precession observed in ventral striatum

‘‘ramp cells’’ (van der Meer and Redish, 2011), and medial pre-

frontal cortex neurons in rodents (Jones and Wilson, 2005). The

former exhibited precession as rodents approached reward lo-

cations, and the latter exhibited precession that was clearest

when rodents approached the decision point in a maze (Jones

and Wilson, 2005). Given that we found goal-state phase pre-

cession across various brain regions, including frontal cortex,

together this body of work supports the hypothesis that pre-

cession may represent ‘‘episodic’’ position within high-level

behavioral states.

It is important to understand the prevalence of phase preces-

sion due to its hypothesized relevance as a neuronal mechanism

for binding and compressing sequential events. In brief, phase

precession organizes spiking at time intervals below the deacti-

vation time constant of NMDA receptors, facilitating synaptic

plasticity between neurons that encode events at behavioral

timescales (Greenstein et al., 1988; Debanne et al., 1995,

1998; Jensen and Lisman, 2000; Bi and Poo, 2001; Reifenstein

and Kempter, 2020). Phase precession may thus be a useful

mechanism in the brain for encoding associations between stim-

uli or events into the relative timing of active neurons for learning

and memory. Critically, our findings demonstrate the potential

generalizability of such a mechanism, extending phase preces-

sion to the human brain and showing that precession does not
necessarily depend on specific physiological constraints such

as a stationary theta oscillation that consistently stays at the

same frequency (Royer et al., 2010; van der Meer and Redish,

2011; Schlesiger et al., 2015; Eliav et al., 2018; Bush and

Burgess, 2020). Demonstrating this generalization of phase pre-

cession supports the broader possibility that the instantaneous

phase of brain oscillations such as theta may serve as an internal

reference ‘‘clock’’ for neuronal spiking (and behavioral states)

(Buzsáki and Tingley, 2018). As the frequency of theta drifts

over time, the phase of this signal may become uncorrelated

with the progression of clock time in the outside world. Thus,

considering oscillation phase as the brain’s internal clock pro-

vides new avenues for research into temporal coding mecha-

nisms throughout the brain (Terada et al., 2017; Tingley et al.,

2014, 2015). There is evidence of this idea in recent literature,

such as the recent finding that hippocampal cell assemblies en-

coding a rodent’s position were more tightly coupled to the

phase of ongoing theta oscillations than to absolute time (Pe-

tersen and Buzsáki, 2020). Therefore, our findings suggest the

potential utility for phase precession in humans, across diverse

brain regions, as a general mechanism for the use of temporal

coding to represent experiences.

In summary, we have provided evidence for spatial phase pre-

cession in the human hippocampus and entorhinal cortex during

virtual navigation and shown that it exhibits features similar to

those seen in rodents. Further, we also demonstrated the exis-

tence of phase precession that is specific to trajectories to

particular goals. These findings suggest that phase precession

is a general mechanism for temporal coding in the human brain,

despite the heterogeneity in theta rhythmicity in human MTL.

Furthermore, the discovery of goal-state phase precession ex-

tends the potential for phase coding to be physiologically rele-

vant for an array of experiential features, even when the neurons

do not show concurrent firing rate changes for those features.

Overall, our results suggest that phase precession is an impor-

tant neural code across species and brain regions, not only for

spatial cognition and memory but also for non-spatial features

of experience.

Limitations of study
Here, we demonstrate the existence of phase precession in hu-

mans. However, because our analysis utilized a wider frequency

band and less stringent spatial-tuning criteria than studies of ro-

dent phase precession, a challenge for future work is to establish

a firm link between rodent and human phase precession. To

bridge this gap, future work in rodents may assess whether

phase precession occurs in neurons with complex spatial firing

fields or out-of-field spiking, and if researchers manipulate the

range of theta frequencies to match those in the human brain.

Firmly linking rodent and human phase precession would

strengthen the idea that precession may hold widespread value

as a neural code in the brain across species. Additionally, char-

acterizing precession in animals that have human-like low-

frequency brain activity, such as bats and non-human

primates, would also strengthen the generalizability of phase

precession. Furthermore, our study involved epilepsy patients

performing spatial navigation tasks on a computer. It is possible,

if unlikely, that the epileptic brain alters patterns such as phase
Cell 184, 3242–3255, June 10, 2021 3251
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precession. It is also possible that virtual navigation elicits

different (i.e., weaker) patterns of phase precession than real-

world navigation.
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Kempter, R., Leibold, C., Buzsáki, G., Diba, K., and Schmidt, R. (2012). Quan-

tifying circular-linear associations: hippocampal phase precession.

J. Neurosci. Methods 207, 113–124.

Killian, N.J., Jutras, M.J., and Buffalo, E.A. (2012). A map of visual space in the

primate entorhinal cortex. Nature 491, 761–764.

Kim, S.M., Ganguli, S., and Frank, L.M. (2012). Spatial information outflow from

the hippocampal circuit: distributed spatial coding and phase precession in

the subiculum. J. Neurosci. 32, 11539–11558.

Lenck-Santini, P.-P., Fenton, A.A., and Muller, R.U. (2008). Discharge proper-

ties of hippocampal neurons during performance of a jump avoidance task.

J. Neurosci. 28, 6773–6786.

Lisman, J. (2005). The theta/gamma discrete phase code occuring during the

hippocampal phase precession may be a more general brain coding scheme.

Hippocampus 15, 913–922.

Lisman, J.E., and Idiart, M.A. (1995). Storage of 7 +/- 2 short-term memories in

oscillatory subcycles.7±2. Science 267, 1512–1515.

MacKay, D.M., and McCulloch, W.S. (1952). The limiting information capacity

of a neuronal link. Bull. Math. Biophys. 14, 127–135.

Manning, J.R., Jacobs, J., Fried, I., and Kahana, M.J. (2009). Broadband shifts

in local field potential power spectra are correlated with single-neuron spiking

in humans. J. Neurosci. 29, 13613–13620.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Rat CA1 data Buzsáki Lab http://crcns.org/data-sets/hc/hc-2

Rat CA1 data Buzsáki Lab http://crcns.org/data-sets/hc/hc-3

Software and algorithms

Python Python https://www.python.org/

Combinato Niediek et al., 2016 https://github.com/jniediek/combinato

Statsmodels https://www.statsmodels.org/stable/index.html SCR_016074

SciPy https://www.scipy.org/ SCR_008058

Matplotlib https://matplotlib.org/ SCR_008624

Analysis code Jacobs Lab proprietary code https://github.com/seqasim/human_precession
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Joshua Jacobs (joshua.

jacobs@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data that support the findings of this study are available on reasonable request from the Lead Contact. The data are not publicly

available because they could compromise research participant privacy and consent. Analysis code is available online (https://github.

com/seqasim/human_precession).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
The thirteen participants in our study (10 male, mean age = 30:2± 11:6 years) were epilepsy patients who had Behnke–Fried micro-

electrodes (Fried et al., 1999) (Ad-Tech Medical) surgically implanted in the course of clinical seizure mapping at the University of

California, Los Angeles. The Medical Institutional Review Board at the University of California-Los Angeles approved this study

(IRB 10–000973), and patients provided informed consent to participate in research. For comparison with rodent data we used a pub-

licly available dataset (CRCNS hc-2, hc-3) (Mizuseki et al., 2009a, 2009b, 2013).

METHOD DETAILS

Data recording
Microwire signals were recorded at 28–32 kHz, and we used Combinato for spike detection and sorting (Niediek et al., 2016). Manual

sorting identified single- versus multi-unit activity versus noise on the basis of previously determined criteria (Hill et al., 2011; Valdez

et al., 2013). The local field potential (LFP) for each neuron was recorded from the local microelectrodes and was downsampled to

250 Hz for spectral analysis.

Task
This behavioral task is described in several previous studies (Jacobs et al., 2007, 2010; Miller et al., 2015; Watrous et al., 2018). Sub-

jects first learned the navigational controls during a 4-delivery training session in a large, wide-open arena. After the practice session,

subjects performed themain task, in which they were instructed to drive passengers to one of 6 goal stores in the virtual environment.

Upon arrival, on-screen text displayed the name of the next randomly selected destination store. The task was self-paced in order to

accommodate patient testing needs. The size of the virtual environment was 10310 VR units, the width of the road was 2.5 VR units,
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and the obstructed area in the center of the road was 535 VR units. During navigation, subjects had a 60+ field of view, a maximum

forward speed of 1.25 VR units/s, a maximum backward speed was 0.5 VR units/s, and maximum angular velocity of 40+/s. To

encourage subjects to take the shortest route to each destination, subjects received 50 points for each successful delivery and

had one point deducted for each second that they spent navigating. Points were constantly displayed on-screen. Patients performed

an average of 73± 11 deliveries in each session. To assess performance on this task, we measured subjects’ excess path length

(EPL) on each trajectory, defined as ratio of the actual path length to the ideal path length. We computed ideal path length on

each trial using the A-star search algorithm to identify themost computationally efficient path between goals in the environment (Rus-

sell and Norvig, 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical methods and software
All statistical analyses were carried out in Python, primarily using the SciPy (Virtanen et al., 2020) and statsmodels (Seabold and Perk-

told, 2010) libraries. For comparisons between two groups, we primarily utilized the Wilcoxon rank-sum test unless otherwise spec-

ified. For omnibus testing, we used ANOVAs, determining the p value by comparing the real test-statistic to those from empirically

derived null distributions generated by shuffling the true data. All figures were made using the Matplotlib (Hunter, 2007) and Seaborn

libraries.

Characterizing place-cell activity
To assess how neuronal activity related to the subject’s virtual spatial location, first, we binned the environment into a 103 10 spatial

grid. We computed the firing rate map for each neuron by dividing the number of spikes by the amount of time spent in each spatial

bin. We then used an ANOVA to assess whether the interaction of X and Y spatial bin (and thus 2D position) significantly modulated

firing rate. To assess the significance of the ANOVA we circularly shuffled the firing rate and generated 500 surrogate test-statistics,

and used this null distribution to determine the shuffle-corrected p value of the ANOVA using the real data. These p values were then

FDR-corrected for multiple comparisons between the three movement types (CW, CCW, bi-directional). We used an ANOVA to clas-

sify spatial-tuning in order to ensure that we captured a wide-range of potentially complex spatial firing fields that might not exhibit

high spatial information scores (Hargreaves et al., 2005; Deshmukh and Knierim, 2011), though this method showed significant

convergence with spatial information metrics (Figure S3D). From this ANOVA method, only neurons with critical statistics exceeding

99% of the shuffled data (p< 0:01) were considered to be spatially modulated. We considered spatially-modulated neurons to be

analogous to place- and grid- cells because firing rate differed significantly as a function of spatial location. We identified the spatial

bin with the highest firing rate (analogous to the center of a place- or grid- field). We only included a spatial bin if the person passed

through it at least 3 times, and occupied it for at least 4 s. To assess the significance of spatial information metrics (Figure S3D) we

generated 500 surrogate spatial information values by randomly re-assigning spikes to positions from the subject’s shuffled trajec-

tories and re-computing spatial information. If a neuron’s spatial information exceeded the 95th percentile of this surrogate distribu-

tion, we considered it to have a significantly higher spatial information than chance.

Spectral analysis of LFP and spike time
To assess the prevalence and frequency of theta oscillations in the human and rodent LFP, we computed the continuous Morlet

wavelet transform (wave number 6) at 20 logarithmically spaced frequencies between 1 and 32 Hz. Then, to identify theta-like oscil-

lations, we utilized an iterative algorithm to subtract the aperiodic background and fit a Gaussian to putative peaks (Donoghue et al.,

2020). For this fitting procedure, we restricted the maximum number of peaks to 2, and the maximum peak width to 4 Hz. We only

assessed the peak height (parameterized as the height of the Gaussian’s peak relative to the aperiodic background) and the peak

frequency (parameterized as the center frequency at which the Gaussian reaches its peak) for the largest peak in the PSD. To assess

the prevalence and frequency of theta oscillations in human and rodent spiking, we computed the autocorrelation of spike times, and

performed a fast Fourier transform (FFT), yielding the PSD of the spike train.

Phase estimation
We estimated the instantaneous phase of LFPs in the theta frequency range. Theta oscillations in human hippocampal formation vary

from low (2–5Hz) to high (5–10Hz) frequencies (Watrous et al., 2013; Jacobs, 2013; Goyal et al., 2020). In order to analyze fluctuations

in the LFP, we estimated 2–10-Hz phase by first identifying peaks, troughs, and midpoints in a broader (30 Hz) lowpass-filtered LFP,

and then linearly interpolating between these points with respect to the (2–10 Hz) band-pass filtered signal to estimate phase in the

desired frequency range. This phase-interpolation method has been used previously to effectively estimate theta phase in bats (Eliav

et al., 2018), as well as in rodents (Siapas et al., 2005; Cole and Voytek, 2019), as an alternative to using the Hilbert transform. This is

because Hilbert phase estimation utilizes narrow band-pass filters that can lead to phase shifts due to the non-sinusoidal character-

istics of the LFP signal, whereas the phase-interpolation method initially relies on a wide-band signal to estimate the true peaks and

troughs of the signal (Belluscio et al., 2012; Dvorak and Fenton, 2014; Cole and Voytek, 2019). To ensure that phase estimates were

not based on an unreliable low amplitude signal, we computed the instantaneous power of the LFP and discarded those time-points

in which the power fell below a 25th percentile threshold (Eliav et al., 2018). Low (2-5 Hz) and high (5-10 Hz) theta bouts showed weak
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but significant correlation in these electrodes (mean f = 0:12;p< 0:05). This indicated that phase estimates could be drawn from

across a range of low or high frequencies except during bouts of correlation, when only one band would contribute phases.

Spatial phase precession
To identify phase precession in this dataset, for each spatially modulated cell we first identified every trajectory through the cell’s

peak firing location. Following the methods used in some recent studies for measuring phase precession (Huxter et al., 2008; Jee-

wajee et al., 2013; Eliav et al., 2018), for each such trajectory we first identified the spike closest to the center of the bin as the center

spike (our reference point for the center of the bin on each trajectory). We limited our analysis to spikes in close spatial proximity to the

center of the peak firing bin. To do so, we only analyzed the 11 closest spikes to the center of the peak firing bin. To ensure that these

11 spikes did not occur too distant from the peak firing bin, we set a diameter threshold of 40% of the environmental width, meaning

that we did not analyze spikes that occurred further than 2 VR units from the center of the peak firing bin. This diameter threshold

could sometimes result in fewer than 11 spikes on trajectories where the neuronwas less active. We re-ran our analyses while varying

the inclusion criterion for the number of spikes (9, 11, & 13) and the diameter (40%& 60%) and found that the parameters we selected

did not significantly affect the proportion of cells exhibiting spatial phase precession (c2 = 5.25, p = 0.5, chi-square test). We next

tested for phase precession using circular statistics. Specifically, for each cell we measured the relation between spike phase

and the subject’s position by computing the circular–linear correlation coefficient (Kempter et al., 2012). We included all data

from the navigation period in our analyses because patients were only stationary for short epochs during each trial (15% of time),

and because excluding these epochs did not lead to reduced power in the 2–10-Hz band, or altered prevalence of phase precession.

In order to assess the statistical significance of each neuron’s circular–linear correlation, we used a shuffling procedure that com-

pares the observed phase-position correlation for each neuron to shuffled data from the neuron’s own spike train (thus maintaining

the mean firing rate for the neuron) (Kempter et al., 2012). To generate the surrogate distribution, we randomly assigned phases to

each spike from the distribution of all the spike phases for that neuron (with replacement), and re-computed the circular–linear cor-

relation 500 times. This null distribution effectively scrambled the relationship between spike position and spike phase and controlled

for any effect of spurious phase estimates or differences in sample size. Here, a neuronwas considered significant only if the circular–

linear correlation computed from the true dataset exceeded the 95th percentile of the distribution of correlation coefficients computed

from shuffled (surrogate) datasets.

Control analyses for spatial phase precession
We performed two control analyses for alternative explanations for the spatial phase precession we observed. The first analysis

tested whether the peak firing bin, our analog to the place-field center, was crucial for observing precession. To do so, we selected

control locations for each cell and assessed the strength and prevalence of precession in these control bins. Control bins were cho-

sen as to not overlap with the peak firing bin (at least 30%of themapwidth away). Similar to the peak firing bin, these control bins had

to be traversed aminimumof 3 timeswith aminimum firing rate of 0.5 Hz. Furthermore, because we only analyzed the 11 spikes in the

immediate vicinity of the peak firing bin, control bins matched the peak firing bin in the sample size of spikes per trajectory, ensuring

that effects were not confounded by firing rate differences. Another possible alternative explanation for our findings is that the phase

precession we observed here is actually encoding relative time to peak firing, independent of spatial position, with particular spike

phases occurring at specific time-intervals within any epoch of elevated firing rate (Ravassard et al., 2013; Aghajan et al., 2015; Um-

bach et al., 2020). To control for this possibility, we identified epochs of elevated firing rate in the time domain without any information

about position, which we refer to as ‘‘firing rate motifs’’ (Ravassard et al., 2013; Aghajan et al., 2015). We identified the spike that

occurred closest in time to the peak firing of each motif field, and used the 11 spikes in the immediate temporal vicinity (within 2 s

before or after) to compute the circular–linear correlation between spike phase and spike time relative to the motif field peak, match-

ing our spatial phase precession analysis. In both cases, we analyzed the paired difference in correlation coefficients (true versus

control precession) for each neuron (Figure S4).

Non-spatial phase precession
Tomeasure non-spatial phase precessionwithout reference to place fields, we compared the spiking frequency of each neuron to the

frequency of the local LFP, with relatively faster rhythmic spiking classified as phase precession (Geisler et al., 2007; Mizuseki et al.,

2009a). However, detecting oscillations in spike times alone is difficult in humans (Figure S1B) and bats (Eliav et al., 2018), potentially

due to the transient, non-stationary nature of theta observed in these species (Watrous et al., 2013; Eliav et al., 2018). Instead, we

applied amethod introduced byMizuseki et al. (2009a) whichmeasures spiking frequency relative to the ongoing LFP. This is a partic-

ularly useful method when the ongoing LFP is non-stationary but may still be an important reference ‘‘clock’’ for neuronal spiking. To

perform this analysis, we computed the autocorrelation histogram of each neuron based on the timescale determined by the phase of

the reference LFP, rather than the conventional method of using absolute time. We computed this autocorrelation using 60
�
bins with

window-length of 4 cycles (Eliav et al., 2018). For visualization, we fit decaying sine wave functions to the autocorrelation histogram

(Eliav et al., 2018). We then computed the Fourier transform of the autocorrelation histogram to yield the power spectral density (PSD)

of the frequency of spiking relative to the LFP. Here, a peak relative frequency greater than 1.0 indicates that the cell is oscillating at

a faster frequency than the reference LFP. We excluded neurons that exhibited both a peak near 1.0 and significant phase-locking

(p< 0:05, Rayleigh test) to ensure that we did not mistakenly identify phase-locked neurons (Jacobs et al., 2007) as exhibiting phase
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precession. To measure the strength of this effect we measured the amplitude of the peak in the PSD, normalized by the total ampli-

tude across all other relative frequencies (Kim et al., 2012), which we refer to as the spike-phase ‘‘modulation index’’ (MI) (Figure 4A).

In order to ensure that our results did not arise from poor phase estimates due to low LFP amplitude, we discarded spikes that

occurred during the lowest 25th percentile of LFP power in the oscillation of interest (Kim et al., 2012; Eliav et al., 2018). In order

to ensure that low spike counts did not confound our estimates we only analyzed cells with more than 100 valid spike-phase esti-

mates for the autocorrelogram. We compared the spike-phase modulation index to the null distribution of spike-phase modulation

indices for the peak frequency, which we computed using randomized phases generated by circularly shifting spike phases within

each cycle of theta. This shuffling ensured that across-cycle dynamics (such as precession) were disrupted while maintaining slower

andmore rapid spiking dynamics (Kim et al., 2012; Eliav et al., 2018). The spike-phasemodulation index was considered significant if

it exceeded the 95th percentile of this surrogate distribution. Finally, we excluded cells that exhibited significant phase-locking during

the entire session (Rayleigh test, p< 0:05) in order to ensure that peaks close to 1.0 did not result from phase-locked spiking.

Goal-state phase precession
To measure goal-state phase precession, we separately applied our analysis of non-spatial precession to spiking during each of the

six goal conditions.We only included neurons for whichwe observed at least 100 spikes per goal, to ensure a sufficient sample size to

analyze non-spatial precession for each goal. We established two tests to characterize significant goal-state phase precession. First,

just as with non-spatial precession, the magnitude of detected phase precession (as indicated by a peak in the spike-phase spectra

exceeding 1.0) had to be greater than the 95th percentile of the shuffled distribution. Because we conducted this test for each of the

six goals separately, we used the False Discovery Rate procedure (Benjamini and Hochberg, 1995) to correct the resulting p values

for multiple corrections across goals. If a goal exhibited significant non-spatial precession, we then compared the goal-specific mod-

ulation index to a surrogate distribution of spike-phase modulation indices generated by selecting 500 random spike-trains from

across the entire session. Each null spike-train was generated to match the number of spikes recorded during the significant goal

to ensure that firing rate differences did not account for our results. The p value from this procedure compares the magnitude of

goal-state precession for the goal in question versus the session as a whole. To test the stability of goal-specific precession, we

computed the Pearson’s correlation between the spike–phase spectra of the first and second halves of the session. We then

compared this distribution of correlation coefficients to a surrogate distribution that we generated by applying the same procedure

to data where the correspondence between the first and second halves of each session was shuffled across cells.
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Supplemental figures

Figure S1. Rodent hippocampal theta oscillations and measurement of precession without position, related to Figures 1 and 4

(A) Power spectral density of hippocampal LFPs recorded in navigating rodents (blue) and humans (red). Black line denotes average across channels. Rodent

hippocampal LFP shows a clear peak in the 5-10 Hz range in almost all channels, while the human LFP does not.

(B) Power spectral density from single-unit discharge from rodent (blue) and human (red) hippocampus. Black line denotes average across neurons. Rodent

spiking shows clear theta modulation of spike timing while human spiking does not.

(C) Spike–phase modulation index (MI) of spike–phase spectral peaks for significant versus non-significant neurons recorded in rodent CA1.

(D) Distribution of relative frequencies for neurons exhibiting significant MI in the spike–phase spectra. Values to the right of the black line indicate that the

neuronal frequency slightly exceeded the LFP frequency.
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Figure S2. Examples of spatial phase precession during individual passes through a field, related to Figure 2

(A) Spike times and 1–30-Hz filtered LFP data during individual passes through peak firing bins for four neurons that exhibited significant spatial phase precession.

Red arrows denote peaks of individual theta cycles.

(B) Spike times and 1–10-Hz filtered LFP data during individual passes through peak firing bins for two neurons that exhibited significant spatial phase precession.

Here, spike times appear to precess with respect to irregular, non-rhythmic low-frequency fluctuations.
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Figure S3. Additional examples of spatial phase precession, related to Figure 2

(A) The activity of four neurons that show significant spatial phase precession. Left: firing rate heatmap. Brighter colors denote higher firing rates. Text label

indicates the color scale for the plot with the mean firing rate of the peak firing bin, which is noted with an asterisk. Dotted lines indicate maximum radius around

field in which spiking was assessed. Arrows in the center of the heatmap indicate the movement direction for which this plot was computed. Middle: spike phase

as a function of location relative to the field center. Spike phases are duplicated vertically to enable visualization of circular–linear regression (red). Text indicates

circular-linear regression coefficient (rho).

(B) Additional examples of significant spatial phase precession.

(C) Visualization of binned phase-by-position for spikes inside and outside the place field for four example neurons exhibiting significant precession. Colormaps

denote circular mean of spike–phase in spatial bin.

(D) Distribution of spatial information (bits/spike) across all spatially-tuned neurons. Black shading indicates cells with spatial information significantly exceeding

chance. The spatially-tuned neurons we identified exhibited higher spatial information content (bits/spike) Skaggs et al. (1993) than non-spatially tuned neurons

(c2 = 12:1, p< 6310�4), or than expected by chance (p< 3310�4, binomial test). E) Distribution of position-phase (red) and rate-phase (blue) circular-

linear correlation coefficients across all neurons exhibiting significant spatial phase precession. Asterisk denotes significant difference between the distributions

(p< 2310�8, paired t test).
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Figure S4. Location- and time-control analyses for spatial phase precession, related to Figure 3

(A) Example of alternate location selected to test whether peak firing bins exhibited significantly greater phase precession than randomly selected locations.

(B) Distribution of paired differences in the strength of precession (true location versus control location), as measured by circular-linear correlation coefficients.

(C) Schematic ofmethod for identifying elevated firing rate. Firing rate had to exceed a firing rate threshold of 1.5 Hz for at least 250ms in order to be classified as a

firing rate ’’motif.’’

(D) Schematic of method for time-based phase precession within motifs of elevated firing rate.

(E) Example neuron exhibiting significant phase precession relative to elapsed time within a firing rate motif.

(F) Distribution of paired differences in the strength of precession (location in field versus time in motif), as measured by circular-linear correlation coefficients.
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Figure S5. Additional examples of goal-state phase precession, related to Figure 5

Three example neurons exhibiting phase precession during navigation to specific goals. Left: Power spectral density depicting frequency of neuronal spiking

relative to ongoing LFP. Asterisk denotes peaks that were significant and significantly different from other goals. Gray lines denote spike–phase spectra for non-

significant goals. Right: Spike–phase autocorrelograms during navigation to each goal (significant goal epochs depicted in color). Text indicates the p value for

both significance tests described in Figure 5C), and relative frequency of spiking to LFP. Black line indicates fit of decaying sine wave function (added to sig-

nificant examples), depicting oscillation in spike–phase autocorrelogram.
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Figure S6. Goal-state phase precession is not a function of a differences in navigation performance, related to Figure 6

(A) Top, stability of goal-specific precession across each half of the task session, measured by the Pearson’s correlation (rho) between the spike–phase spectra of

the 1st and 2nd halves of the session. Bottom, surrogate distribution of stability generated by shuffling cell labels across the 1st and 2nd half spike–phase spectra

used to compute between-half correlations.

(B) Excess path length as a function of goal.

(C) Distribution of Cohen’s d comparing excess path length during trajectories to goals that showed precession versus those that did not. Black dotted line

indicates effect size of ± 0:8.
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