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Direct brain stimulation

Background: Researchers have used direct electrical brain stimulation to treat a range of neurological and
psychiatric disorders. However, for brain stimulation to be maximally effective, clinicians and researchers
should optimize stimulation parameters according to desired outcomes.
Objective: The goal of our large-scale study was to comprehensively evaluate the effects of stimulation at
different parameters and locations on neuronal activity across the human brain.
Methods: To examine how different kinds of stimulation affect human brain activity, we compared the
changes in neuronal activity that resulted from stimulation at a range of frequencies, amplitudes, and
locations with direct human brain recordings. We recorded human brain activity directly with electrodes
that were implanted in widespread regions across 106 neurosurgical epilepsy patients while systemat-
ically stimulating across a range of parameters and locations.
Results: Overall, stimulation most often had an inhibitory effect on neuronal activity, consistent with
earlier work. When stimulation excited neuronal activity, it most often occurred from high-frequency
stimulation. These effects were modulated by the location of the stimulating electrode, with stimula-
tion sites near white matter more likely to cause excitation and sites near gray matter more likely to
inhibit neuronal activity.
Conclusion: By characterizing how different stimulation parameters produced specific neuronal activity
patterns on a large scale, our results provide an electrophysiological framework that clinicians and re-
searchers may consider when designing stimulation protocols to cause precisely targeted changes in
human brain activity.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. 351 Engineering Terrace, Mail Code 8904, 1210

Amsterdam Avenue, New York, NY, 10027, USA.

E-mail address: joshua.jacobs@columbia.edu (J. Jacobs).

https://doi.org/10.1016/j.brs.2020.05.009

1935-861X/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joshua.jacobs@columbia.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.brs.2020.05.009&domain=pdf
www.sciencedirect.com/science/journal/1935861X
http://www.journals.elsevier.com/brain-stimulation
https://doi.org/10.1016/j.brs.2020.05.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.brs.2020.05.009
https://doi.org/10.1016/j.brs.2020.05.009

1184 U.R. Mohan et al. / Brain Stimulation 13 (2020) 1183—1195

Abbreviations
HFA High Frequency Activity
LME Linear Mixed Effects
DBS Deep Brain Stimulation
iEEG Intracranial Electroencephalography
MTL Medial Temporal Lobe
LTL Lateral Temporal Lobe
Introduction

Direct electrical stimulation shows potential as a treatment for a
variety of neurological conditions and as a tool for studying
neuropsychiatric disorders and cognition. However, we do not yet
have a detailed understanding of the widespread neuronal effects
that result from different types of stimulation. The goal of our study
was to examine this issue by characterizing at a large scale how
different types of brain stimulation modulate directly recorded
human neuronal activity.

For years, direct electrical stimulation has been used to effec-
tively treat motor disorders, such as Parkinson’s Disease, essential
tremor, dystonia, and epileptic seizures
[7,14,25,26,46,51,54,55,106]. In the past two decades, researchers
have extended stimulation protocols from motor disorders to better
understand and modulate brain circuits of neuropsychiatric and
cognitive disorders, such as major depression [68], obsessive
compulsive disorder [80], addiction [48,57], anorexia nervosa [59],
schizophrenia [4,49], and Alzheimer’s disease [50,63]. While direct
electrical stimulation holds potential to treat patients with neuro-
logical disorders who cannot be treated pharmacologically, un-
derstanding how different stimulation parameters differentially
affect neuronal activity is important for optimizing such therapies.

Researchers and clinicians have found that stimulation produces
a wide range of behavioral effects. Cortical stimulation was first
linked to human memory in Wilder Penfield’s pioneering studies
where stimulating an awake patient’s temporal lobe caused them
to spontaneously recall old memories [82]. Penfield’s subsequent
work showed that the particular location that was stimulated
greatly affected how patients re-experienced old memories.
Following this, many studies applied direct electrical stimulation to
the temporal lobe using a variety of stimulation parameters. The
results from these studies were wide-ranging, emphasizing the
complexity of precisely modulating human neuronal activity with
stimulation [10,20,88,94]. Early applications of stimulation in non-
human primates showed impairment in working memory when
stimulating specific frontal cortex locations [100,101]. Subsequent
studies in humans showed that stimulation impaired recall of
complex scenes [31], subsequent item recognition [13], spatial, and
verbal memory recall [40,53]. However, a number of studies have
also shown improvements to verbal, visual, and spatial memory
[21,23,73,95]. Studies using brain stimulation to treat other
neurological diseases also found inconsistent cognitive effects
[30,54,55,68]. The stimulation protocols used in these studies var-
ied substantially in terms of locations, frequencies, durations, am-
plitudes, pulse patterns (continuous or intermittent), and times at
which stimulation was delivered. To explain why these studies
found such diverse behavioral and cognitive effects from stimula-
tion, it is helpful to understand the physiology of how different
kinds of stimulation alter underlying neuronal activity.

Earlier studies showed that stimulation can cause both excit-
atory and inhibitory effects on local and connected regions. Yet,
within the realm of treating Parkinson’s Disease with deep brain

stimulation (DBS) where clinical outcomes are well established, the
electrophysiology of stimulation is unclear. While some studies
demonstrate that stimulation causes inhibition [9,18,58,102], other
studies show excitation after stimulating at different frequencies
and locations [1,34,42,67,105]. There is evidence that the location of
a stimulation electrode has an important role in dictating the
outcome of stimulation, with white- and gray-matter stimulation
sites causing different effects [36,37,78,79]. Further, an early study
in non-human primates describes motor and autonomic responses
to stimulation that depend on both stimulation frequency and
duration [72]. Logothetis et al. [61] build upon this showing evi-
dence of specific microstimulation frequencies and locations
simultaneously inducing both inhibitory and excitatory effects in
different regions. These findings, which illustrate the diverse range
of electrophysiological effects of brain stimulation, demonstrate the
challenge in designing brain stimulation protocols to modulate
brain activity in targeted ways that achieve desired behavioral
outcomes.

The goal of our study was to comprehensively evaluate the ef-
fects of different types of stimulation on neuronal activity across
the human brain. To examine changes in neuronal activity due to
stimulation, we collected and analyzed direct brain recordings from
106 neurosurgical patients who underwent an extensive stimula-
tion “parameter search” paradigm involving a range of stimulation
frequencies and amplitudes at different cortical surface and depth
locations. We then measured how different stimulation parameters
correlated with the directional changes in neuronal activity that
resulted from stimulation. Because we sought to understand the
effects of stimulation on the mean activity across neuronal pop-
ulations, we measured high-frequency broadband power
(30—100 Hz), which provides an estimate of the mean rate of local
neuronal spiking activity [66,99]. Our results provide a more
comprehensive examination of the direct electrical stimulation
parameter space than any prior human study. We find that the
neuronal effects of stimulation are highly parameter dependent.
Specifically, the prevalence of excitation and inhibition are modu-
lated by the frequency and amplitude of stimulation and by region
and the distance of the stimulation site to white-matter tracts.
These results provide a starting point for clinicians and researchers
to more optimally design stimulation protocols according to the
desired types of changes to ongoing brain activity.

Methods
Participants

The 106 patients in our study were surgically implanted with
depth, surface grid, and/or surface strips of electrodes for the
purpose of identifying epileptic regions. The patients’ clinical
teams determined electrode placement to best monitor each pa-
tient’s epilepsy. We conducted these procedures at eight hospi-
tals: Thomas Jefferson University Hospital (Philadelphia, PA);
University of Texas Southwestern Medical Center (Dallas, TX);
Emory University Hospital (Atlanta, GA); Dartmouth—Hitchcock
Medical Center (Lebanon, NH); Hospital of the University of
Pennsylvania (Philadelphia, PA); Mayo Clinic (Rochester, MN);
National Institutes of Health (Bethesda, MD); and Columbia Uni-
versity Hospital (New York, NY). Following institutional review
board protocols at each hospital, all participating patients pro-
vided informed consent.

Stimulation paradigm

This stimulation “parameter search” paradigm was part of a
larger project aimed to enhance episodic and spatial memory
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using direct electrical stimulation [21,22,40]. Blackrock Micro-
systems provided neural stimulation equipment for these pro-
tocols. As part of this larger project, subjects participated in this
paradigm to characterize the brain-wide effects of applying
electrical stimulation at different sites with varying frequencies
and amplitudes. During each session of this stimulation proced-
ure, we instructed subjects to sit quietly and rest with eyes open
as we applied various types of stimulation and measured neuronal
activity. The main goal in applying stimulation across frequencies,
amplitudes, and sites was to identify specific stimulation locations
and parameters that would enhance performance in subsequent
memory tasks [21]. Therefore, we often applied stimulation in
medial temporal lobe (MTL) and lateral temporal lobe (LTL) lo-
cations based on their functional relevance for memory [19,81]
(Table S2).

A clinical neurologist oversaw all stimulation sessions. We per-
formed a separate amplitude screening procedure for each target
site before stimulation. In the screening procedure, each site was
progressively stimulated for 500 ms at each tested frequency,
beginning at 0.5 mA, in steps of 0.5 mA, up to a maximum of 1.5 mA
for depth electrodes or 3 mA for surface electrodes. A neurologist
monitored visually for afterdischarges throughout this process. We
then logged for each site the maximum current that could be
applied without causing afterdischarges.

In the main stimulation protocol, we applied bipolar stimula-
tion across neighboring anode and cathode electrodes using 300
us charge-balanced biphasic rectangular pulses. For each site, we
stimulated at frequencies of 10, 25, 50, 100, or 200 Hz, with am-
plitudes from 0.25 mA up to the site’s determined maximum in
steps of 0.25 mA, as well as 0.125 mA. Each stimulation trial was
applied for 500 ms, with a random delay of 2750—3500 ms
(uniformly distributed) between the offset and onset of consec-
utive stimulation trials. Within each ~25-min session that stim-
ulated one location, we randomly ordered stimulation trials with
different frequencies and amplitudes to prevent confounds arising
from trial order. Each targeted stimulation site received 24 stim-
ulation trials for each combination of frequency and amplitude.
Some subjects participated in a version of this procedure that also
included sham trials without stimulation. Individual subjects
participated in this stimulation protocol for between 1 and 9 in-
dividual sites (mean = 2.8 sites). Overall, we collected a total of
354 sessions, stimulating at 319 distinct sites from 106 subjects
with between 54 and 173 bipolar recording pairs (mean = 108,
total 10,266 electrodes). Following artifact rejection (see below),
we included in our data analyses 292 sessions over 264 stimula-
tion sites from 94 subjects while recording simultaneous neuronal
activity from 9,775 bipolar electrode pairs, where each subject
had between 22 and 170 bipolar recording pairs (mean = 102
electrodes).

Electrocorticographic recordings and referencing

To measure the electrophysiological effects of stimulation,
throughout a stimulation session we recorded neuronal activity at
500, 1000, or 1600 Hz using a clinical intracranial electroenceph-
alographic (iEEG) recording system at each hospital (Nihon Kohden
EEG-1200, Natus XLTek EMU 128, Natus Quantum EEG, or Grass
Aura-LTM64 systems). We referenced each electrode’s signal to a
common contact placed intracranially, on the scalp, or mastoid
process. To reduce non-physiological artifacts, we used bipolar
referencing, computed as the voltage difference between pairs of
adjacent electrodes. The location of each bipolar pair was taken as
the midpoint between the two physical electrodes. We further
filtered electrical line noise using a 57—63-Hz Butterworth notch
filter.

Anatomical localization

We determined the location of each electrode by co-registering
a post-surgical CT scan to T1 and T2 weighted structural MRIs taken
prior to implantation. We determined electrode localization in
cortical regions by co-registration of the post-implantation CT,
corrected for post-operative brain shift, with Freesurfer’s auto-
mated cortical parcellation based on the Desikan-Killiany brain
atlas [17]. We based localization to medial temporal lobe structures
on MTL segmentation using Automatic Segmentation of Hippo-
campal Subfields (ASHS) [108].

Artifact rejection

Applying electrical stimulation can cause the appearance of
non-physiological signals in iEEG recordings that manifest as
complete amplifier saturation or overall shifts in signal amplitude,
such as rise, decay, or deflection following stimulation before
returning to baseline (Fig. S2). These non-physiological changes
could impair our ability to accurately measure true physiological
signals related to stimulation.

Therefore, to minimize the impact of artifacts on our results, we
excluded from our analyses any recording electrodes and trials that
showed post-stimulation artifacts. We implemented a detection
algorithm to identify channels that are prone to complete signal
saturation as well as gradual post-stimulation artifact. Following
earlier methods [91], we compared the average voltage of the signal
from —500 to —100 ms prior to stimulation onset and from 100 to
500 ms after stimulation offset. To include data from as many
recording electrodes as possible, we took a two-phase approach to
exclude artifacts on the single-trial level as well as on an electrode
level. To identify artifacts, we employed Grubb’s outlier test to
classify the trials that exhibited large non-physiological changes in
voltage. Specifically, we excluded the data of any trials that showed
a change in voltage between the pre- and post-stimulation in-
tervals that was greater than 2 standard deviations of the corre-
sponding mean voltage changes for matching sham trials for the
same electrode (Fig. S2). We excluded any electrodes that showed
artifacts on over half of all trials for a particular combination of
parameters. Some stimulation sites were especially conducive to
spreading artifacts across recording electrodes, and thus we
excluded stimulation sites that caused artifacts on over half of all
recording electrodes. Overall, we excluded 56 stimulation sites, an
average of 10% of bipolar recording electrodes, and 12% of stimu-
lation trials on remaining contacts (see Table S3). In addition to
excluding trials, recording electrodes, and stimulation sites affected
by amplifier artifact following stimulation, we excluded trials with
epileptiform activity if the kurtosis of the voltage signal exceeded a
threshold of 3 [16]. Using this method, we excluded an average of
3.2% +3.8% of stimulation trials.

Spectral power analysis

To measure the effect of stimulation on mean neuronal firing
rates, we extracted the high-frequency activity (HFA) signal from
each iEEG recording, as prior studies found this signal to be a
reliable measure of mean neuronal activity [66,74,99]. We
measured HFA power in our data by calculating power spectra post-
(100 to 600 ms after stimulation offset, defined as the last pulse of
the stimulation trial) and pre- (—600 to —100 ms before stimulation
onset) stimulation at 12 log-spaced frequencies between 30 and
100 Hz using multitapers, which provide better resolution at high
frequencies [76]. Consistent with prior iEEG studies, we used log-
spaced frequencies to better represent broadband electrophysio-
logical properties [66,85,87,90]. We allowed a buffer of 100 ms
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before and after stimulation and limited the cycles used to calculate
each frequency for finer temporal resolution and prevent any
impact of stimulation artifacts on our measurements of pre- or
post-stimulation power (see Fig. S4).

Linear mixed-effects model

We used a linear mixed-effects (LME) model to analyze the ef-
fects of stimulation on neuronal activity and identify how the
prevalence of these effects vary with parameters. An LME model is a
type of regression model that models the variation of a dependent
variable as a function of both fixed and random effects. An LME
model may be implemented in a group-based way that can account
for repeated measurements from one sample [3]. This feature is
important for our study because our dataset included possibly
correlated measurements, as we tested the effects of different pa-
rameters at the same stimulation site. Additionally, the LME model
is useful for this dataset because it can account for uneven sampling
across groups and conditions, which also occurred when separate
sites were stimulated with different sets of frequencies and
amplitudes.

To apply the LME model to our data, we used fixed factors for
variables of frequency (up to 5 possible values per site), amplitude
(typically 3 per site), and binned distance between recording
electrodes and the stimulation site. We also defined categorical
variables of stimulation electrode type and stimulation in white or
gray matter as fixed factors.

We defined the dependent variable as the prevalence of HFA
changes measured by the percent of recording electrodes showing
significant increases or decreases in HFA power. The equation
below describes this model in which the outcome variable y in-
dicates the prevalence of HFA changes, X; and X, represent stim-
ulation frequency and amplitude, 1 and B, are the fitted regression
coefficients, and « is a vector of residuals.

y=Bo+B1 X1 +B2Xa+e¢

We then combined across subjects to provide summary co-
efficients for each factor that indicate its mean effect across the
population [6]. We calculated “z”-values as the parameter esti-
mates divided by their standard errors and p-values with respect to
95% confidence intervals of standard normal distributions.
Following LME syntax for our main frequency and amplitude re-
sults, the model has the following form (Fig. 2) where the inter-
action of fixed factors was computed separately: AHFA ~
frequency + amplitude + (frequency + amplitude | stimulation
site). The last term indicates that for each stimulation site, the
model fits correlated random intercepts and slopes for frequency
and amplitude factors. To compare the effects of stimulating
different regions and tissue in Fig. 3, where there were no repeated
measures between categories, we used a two-way ANOVA.

Seizure-onset zones

Clinical teams at each hospital provided information about
electrodes identified in seizure onset zones (SOZ). To verify that our
results were not directly related to abnormal brain tissue, we per-
formed the population analyses of the effects of stimulation fre-
quency and amplitude separately for the sets of stimulation sites
and corresponding recording electrodes that were located in
healthy tissue and SOZs (Fig. S7). All main frequency- and
amplitude-related effects continued to be significant for the sepa-
rated analyses, confirming our main results (Fig. S4C).

White matter categorization

We categorized each stimulation site as either being in or near
white matter or in gray matter to determine the impact of white
matter on the effects of stimulation. We estimated the amount of
white matter near each stimulation site by counting the number of
white matter vertices within a spherical volume around the
midpoint of the stimulation anode and cathode. This volume has a
radius of 4 mm, which also includes the anode and cathode. We
used Freesurfer white matter segmentation of patients’ T1 MRI scan
to determine white-matter vertex locations [91]. We then catego-
rized stimulation sites as near white matter or in gray matter by
splitting the number of white-matter vertices surrounding stimu-
lation sites along the median of the distribution.

Data availability

Raw electrophysiogical data used in this study are available at
http://memory.psych.upenn.edu/ElectrophysiologicalData.

Results

The goal of our study was to characterize the effects of different
types of direct electrical brain stimulation on ongoing neuronal
activity in humans. Here, we recorded iEEG activity from wide-
spread electrodes while delivering electrical stimulation at
different locations, frequencies, and amplitudes as patients rested
quietly. To assess the effect of stimulation on neuronal activity, we
measured the amplitude of signals in the high-frequency-activity
(HFA) range (30—100 Hz), which correlates with mean level of
spiking activity of a local neuronal population [29,66,74,99].

Effects of stimulation at low and high frequencies

To illustrate the neuronal effects from stimulation at different
frequencies, we first show data from an example subject who
received electrical stimulation at one location at four frequencies:
10, 50, 100, and 200 Hz. Each frequency was tested 96 times at each
amplitude. To measure the effect of stimulation at each frequency,
we computed the mean spectral power in the HFA band on each
recording electrode in a 500-ms interval before and after each
stimulation trial (Fig. 1A). On many recording electrodes, we found
statistically reliable HFA changes following stimulation at a
particular frequency (Fig. 1B and C; z = 5.47, p < 1075, signed-rank
test, uncorrected). The extent of these HFA changes across multiple
recording sites is illustrated in Fig. 1D, which shows that this sub-
ject had widespread electrodes that showed significantly decreased
HFA power when 10-Hz, 1-mA stimulation was applied at a site in
the left LTL.

To quantify the brain-wide changes in HFA power that resulted
from each type of stimulation, we computed the mean power
change across stimulation trials for each recording electrode
(Fig. 1E), excluding sites showing artifacts (see Methods). For this
site, 10-Hz stimulation at 1 mA caused a significant decrease in
mean HFA power across electrodes (z = —7.59, p < 10719, signed-
rank test, uncorrected; Fig. 1E). Notably, the recording electrodes
that showed significant changes in HFA power included locations
both proximal and distal to the stimulation site, even in contra-
lateral areas (Fig. 1D), which might be considered surprising in light
of previous studies that focused on local effects of stimulation
[18,58,61].

We next examined HFA changes due to stimulation at other
frequencies in this subject. Fig. 1B shows the pattern of HFA power
changes that resulted from 200-Hz, 1-mA stimulation at the same
site. In contrast to 10-Hz stimulation, we instead found HFA power


http://memory.psych.upenn.edu/ElectrophysiologicalData

10Hz

U.R. Mohan et al. / Brain Stimulation 13 (2020) 1183—1195

200Hz

1187

A PRE POST D F>200 PRE POST |
3 - [ 2 o K 4
© 4 o g
% o ol ¢ 8 0 M :
3 k]
> y > ¥
~200 Y “200
1000 500 0 500 1000 1500  stimulation Q -1000-500 t\Sn . (mio)o 1000 1500 stimulation A
time (ms) site J site v
B s - b ] ® 1
= ] oo ® } o] R
T4 { b
3 g ¢
83 pre-stim 4 ®iee ‘\
> poststim
82 ° ¢
°
1 °
°
= 2{ = 2 M
£y 5, electrode 27
3 3
ki 2 rz{
4 6 10 16 26 41 64 100 4 6 10 16 26 41 64 100
Frequency (Hz) Frequency (Hz)
C N H .
28 electrode 27 28 electrode 27 \¢
. N h
] 1]
g2s | aaaaa— | g4 I ]
£ 3 T Ot t 8 B -3 0 8
-stal T-stat
N E E Jso
7 3 % 20 2
& 20 3 52 820
@ £20 4 =
2 210
* 5

0.2

1 0.0 0, 20 24 0.1 0.0 01
Mean HFA change POST-stim HFA power Mean HFA change

Fig. 1. Effects of low- and high-frequency stimulation on HFA power. Left panels (A—E) indicate effects of 10-Hz stimulation and right panels (F—]) indicate 200-Hz stimulation,
all in Patient 195. Stimulation was applied at the same site and amplitude (1 mA) for all panels. (A) Raw voltage signal recorded on example electrode 27 on one trial. Shading
indicates the 500-ms time periods before and after each stimulation trial during which we measured HFA power. Red lines denote stimulation onset and offset. (B) Top panel shows
log-transformed mean power spectra from recording electrode 27 for the pre- and post-stimulation intervals across the 96 stimulation trials at 10 Hz and 1 mA. Gray shading
indicates the HFA band (30—100 Hz). Bottom panel show t statistic of the difference between pre- and post-stimulation (POST-PRE) power at each frequency. Blue shading indicates
significant differences at p < 0.05. (C) The distribution of pre- and post-stimulation HFA power across individual trials for electrode 27. (D) Brain map showing the mean HFA
responses to 10-Hz stimulation across all recording electrodes, where each circle is a bipolar pair’s midpoint. The stimulation site is indicated in black and color indicates the t
statistic of the change in HFA power at each recording electrode. Recording electrodes excluded due to artifact indicated by an open gray circle. Bold colored electrodes are those
that are significant following Benjamini-Hochberg correction. (E) The distribution across electrodes, of the mean HFA power change in response to 10-Hz stimulation. Each value
represents one electrode’s mean HFA power change from stimulation (POST-PRE). (F—]J) Plots follow format from panels A—E except for 200-Hz stimulation. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

HFA Increases
Surface stimulation

HFA Decreases
Surface stimulation

Depth stimulation Depth stimulation

N

3 4
104 3 104 104 3
— 108 — 105
N N
I 25 S I+ 254 s
> 82 > 82
2 50 5 250 50 5
[ Q o Q
3 °8 = 68
8 1004 S g0 100 o 3
w 4T« 4%
2004 g 200 200 1 8
——— T T —— 22 ——————— —— T 22
0125 025 05 075 10 025 05 075 10 125 15 175 20 0.125 0.25 05 0.75 1.0 025 05075 1.0 125 1.5 175 20
Amplitude (mA) Amplitude (mA) Amplitude (mA) Amplitude (mA)
C 104 D60 "
2 —f— HFAdecrease 10 Hz
3 =F= HFAincrease 50 200 Hz
5 81 »
Q@ 2
] ®
>, g4
£ 6 %
g 5 30
g 8
44
= = L £
o L L T z
o I——/i' T low amp surface 10
o =~ B i
24 et et X 3 - T ——-—T
o p===" == - g mnd ’7 |
] Il —
T T y T T
10 2! 50 100 200 -0.04 -0.02 0.00 0.02 0.04

Stimulation frequency (Hz) Mean HFA change
Fig. 2. Population analysis of the frequency- and amplitude-dependence of HFA changes from stimulation. (A) Percent of recording electrodes showing significant HFA de-
creases for each combination of stimulation frequency and amplitude, separately computed for depth (left) and surface (right) stimulation. Gray blocks indicate an insufficient
number of stimulation sites for the parameter combination. (B) Percent of recording electrodes showing significant HFA increases for each combination of stimulation parameters.
(C) Percent of recording electrodes showing significant HFA increases and decreases for each stimulation frequency. Calculations were performed separately across depth and
surface stimulation sites. Data in this plot included 1 mA stimulation for both effects of depth stimulation and surface HFA decreases; surface HFA increases calculations separately
measured for currents >0.75 mA and <0.75 mA. Error bars: +1 SEM. Blue and red dotted lines indicate corrected type 1 error rate of the percent of electrodes increasing or
decreasing estimated from a permutation test by randomly circularly shifting stimulation sessions for 100 iterations and calculating the 95% confidence interval of the resulting
distribution of numbers of significant electrodes. (D) Histogram of the mean HFA change for each stimulation site, separately computed for high and low-frequency stimulation; **
denotes a significant difference (z = —3.81, p = 0.0001, rank-sum test). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)



1188 U.R. Mohan et al. / Brain Stimulation 13 (2020) 1183—1195
4 Patient 96
¥ F o
b TR
gray ? P ¢ 5
whi(e'i ® matter sodhessid 4 $e° 8 s ¢ 4

matter

r 22 =
-3 0 3
T-stat
Patient 204
f \f
53 3
¥ ¥
ﬂ : i
. v v
white ®o b 1 ¢

o i 5 i

@ @ @ matter f

gray
matter

Decrease
10-50Hz stim o

=

Increase
100-200Hz stim
%

Increase
100-200Hz stim

Decrease
100-200Hz stim

* *

brain-wide
®
=
brain-wide
®
H

A
b

% recording electrodes O
N
%
*

% recording electrodes U
N}

=)
o

Neocortex MTL
Stimulation Region

White MTL

White Gray Neocortex

Gray
Stimulation Tissue

Fig. 3. Role of stimulation location in modulating the effects of stimulation. (A) Brain maps of HFA responses to stimulation near white and in gray matter in example Patient
96. Stimulation site is indicated in black and color indicates t statistic of HFA change for bipolar recording electrodes. Both sites were stimulated at 200 Hz and 0.75 mA. Left brain
map indicates data for a stimulation site near white matter, which generally caused HFA power increases. The right brain map shows data from stimulation at a site in gray matter,
which generally caused decreases in HFA power. Bold colored electrodes are those that are significant following Benjamini-Hochberg correction. Far left panel, coronal MRI image
showing the precise location of these two stimulation sites. The white circles are monopolar electrodes and red labels 1 and 2 correspond with left (white) and right (gray)
stimulation site midpoints, respectively. The orange overlay indicates white matter. (B) Brain map of HFA responses to stimulation near white and in gray matter in example Patient
204. Both sites were stimulated at 200 Hz and 1 mA. Plot format follows panel A. (C) Group-level analysis, illustrating the percent of recording electrodes across the entire dataset
that showed significant HFA power increases and decreases for white- and gray-matter stimulation. All blue and red dotted lines indicate corrected type 1 error rates of the percent
of electrodes increasing or decreasing. All error bars: +1 SEM. (*p < 0.05, **p < 0.01). (D) Group-level analysis of percent of recording electrodes grouped by stimulation regions
showing decreases for low (10—50 Hz) frequency stimulation and increases for high (100—200 Hz) frequency stimulation. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

increases across many recording electrodes (Fig. 11). This HFA po-
wer increase was robust at the level of individual electrodes
(Fig. 1H; z = 5.03, p < 107>, signed-rank test, uncorrected) as well as
at the group level across this subject’s brain (Fig. 1]; z = 4.64,
p < 1073, signed-rank test, uncorrected). Thus, the data from this
subject illustrate that the effect of stimulation can be frequency
dependent, with 10- and 200-Hz stimulation at the same site and
amplitude having opposite effects on HFA power. Because we also
found similar response patterns in other subjects (Fig. S1), we next
characterized this effect at the group level.

Population analysis of the effects of stimulation frequency and
amplitude

To characterize the effects of stimulation with different pa-
rameters across our dataset, we computed the proportion of all
recording electrodes that showed significant HFA decreases or

increases for each unique combination of stimulation site, fre-
quency, and amplitude. Fig. 2A illustrates, for each stimulation
parameter, the percentage of recording electrodes that showed
significant HFA power decreases averaged across stimulation sites.
HFA decreases were most prevalent for stimulation at low fre-
quencies and high amplitudes. This pattern was present for both
depth and surface stimulation sites. When stimulating surface
electrodes at high amplitudes, HFA decreases were prevalent for all
frequencies.

To assess the reliability of these effects statistically, we used a
linear mixed-effects (LME) model to analyze how the prevalence
HFA changes depends on stimulation parameters (see Methods).
Due to our clinical data collection environments, our dataset is
heterogeneous, with individual subjects having variable numbers
of stimulation sites and individual sites being stimulated at
different frequencies and amplitudes. LME modeling is well-suited
for analyzing this type of heterogeneous dataset because it can
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identify linear trends (including interactions) across multiple fac-
tors and can accommodate both repeated and missing measure-
ments [3]. We used the LME model to analyze the distributions of
HFA power changes across the dataset (Fig. 2A). The results
confirmed that the frequency and amplitude dependence of HFA
power decreases mentioned above were statistically reliable for
both depth electrodes (magnitude of all z’s = 3.38—5.09; all
p's < 1073 for effects of frequency, amplitude, and their interaction)
and surface electrodes (magnitude of z's = 2.34—2.5, all p’s < 0.05,
see Table S4A).

We also used the LME model to examine the parameter
dependence of stimulation-induced HFA power increases. Because
we found HFA changes to be diverse across recording electrodes, we
modeled HFA decreases and increases separately to capture
simultaneous positive and negative HFA changes on different
recording electrodes that may otherwise be lost when averaging
effects. Fig. 2B shows the mean percentages of recording electrodes
that showed significant HFA power increases following stimulation
at various parameters. Stimulation on depth electrodes at high
frequencies and high amplitudes was most closely linked to in-
creases in HFA power. The LME model confirmed that this effect
was robust for depth electrodes, by showing significant effects of
stimulation frequency and amplitude on HFA power (both
p’s < 0.05, see Table S4A). This finding that higher stimulation
currents are associated with broader HFA power increases is
consistent with the earlier findings that higher currents are asso-
ciated with more widespread phosphenes in the visual cortex [104]
and findings that the magnitude of cortical responses to stimula-
tion depend on stimulation amplitude [15]. In contrast, for surface
electrodes, HFA increases were most prevalent for high-frequency
stimulation at low amplitudes (Frequency x Amplitude interac-
tion: z = 2.01, p = 0.04, see Table S4A).

Fig. 2C summarizes these results. Overall, HFA decreases were
more prevalent than increases, regardless of stimulation fre-
quency and electrode type. Further, stimulation on depth elec-
trodes at high and low frequencies, respectively, was associated
with HFA increases and decreases (LME model for HFA change
direction and Frequency factors: magnitude of all z's = 3.77—4.06,
all p’s < 1073, see Table S4C). Notably, high-frequency surface
stimulation rarely caused HFA increases, whereas high-frequency
depth stimulation reliably caused HFA power increases (see above
LME model results).

While these trends were robust statistically, we observed that
the HFA power changes showed variability across individual stim-
ulation sites (Fig. 2D). To measure this variability, we quantitatively
compared HFA response patterns across different stimulation sites
in the same subject. On average, only 16% of subjects showed
similar (positively correlated) patterns of HFA power changes in
response to stimulation at different sites (Fig. S3A), which supports
our approach of separately analyzing individual stimulation sites.
Nonetheless, to confirm that our results were not affected by
treating stimulation sites independently, we also performed the
above analyses at the level of each subject, by averaging response
patterns across the stimulation sites within each subject prior to
population-level statistical analysis. This subject-level analysis
confirmed our primary results of frequency-dependent HFA power
changes (Fig. S3B-E). More broadly, the variability between HFA
changes caused by different stimulation sites in a subject empha-
sizes the importance of understanding the role of location in
modulating neuronal activity. Additionally, to confirm that HFA
changes for each trial do not depend on the effects from prior trials,
we performed an analysis of the percent of recording electrodes
showing significant changes for each stimulation frequency as a
function of the frequency of the trials immediately preceding each
trial. This confirmed that HFA power changes depend on the

current trial’s stimulation frequency and not on the prior trial’s
frequency for both HFA increases and decreases (Fig. S8, see
Table S4F).

Distance to white matter and region mediate the effects of
stimulation

Previous studies showed different neurobehavioral changes
from applying stimulation in white versus gray matter [68,96].
Modeling and animal studies demonstrated that bipolar stimula-
tion creates an electrical potential field between and around the
anode and cathode of the stimulation site that activates elements
within a volume of tissue [12,36,65,71]. Based on these models, we
hypothesized that stimulation applied in proximity to white-matter
tracts would have different neuronal effects compared to stimula-
tion in gray matter.

To compare the physiology of white- versus gray-matter stim-
ulation on a large scale, we investigated how the proximity of
stimulation sites to white matter correlates with the resulting
change in HFA power. We first classified each depth stimulation site
according to whether it was in white or gray matter, based on its
mean proximity to white matter tracts (see Methods), and sepa-
rately compared the HFA changes for each group. The midpoint of
white-matter stimulation sites were on average 1.4 mm + 0.8 mm
away from the closest white matter while gray-matter stimulation
sites were on average 10.5 mm + 22.6 mm away from the closest
white matter. Fig. 3A and B show data from two patients who were
each stimulated at two nearby sites, one near white matter (labeled
#1) and near gray matter (#2). Both subjects showed HFA decreases
when stimulation was applied at the gray-matter site and,
inversely, HFA increases for stimulation at the white-matter site.

We next performed a group-level analysis of the relation of
stimulated tissue on HFA changes. We focused this analysis on
stimulation parameters in the range of 100—200 Hz and 0.5—1 mA
on depth electrodes, which were chosen as the parameters most
likely to cause HFA increases. We compared the prevalence of HFA
power changes across sites in white (n = 70) and gray matter
(n = 61). Stimulation at white-matter sites caused a greater rate of
HFA increases compared to sites in gray matter (Fig. 3C). Inversely,
gray-matter stimulation caused more HFA power decreases
compared to white-matter stimulation. Analyzing the prevalence of
each type of HFA change with a two-way ANOVA, we confirmed
that there was a statistically significant interaction between stim-
ulating near white- or gray-matter and the prevalence of HFA in-
creases and decreases (Tissue x HFA change: F(1, 1) = 6.55,
p = 0.01).

To compare the effects of stimulating different brain regions, we
measured the percentages of recording electrodes that showed HFA
decreases and increases following stimulation. We focused on
stimulation at 0.5—1 mA on depth electrodes to compare MTL (MTL,
hippocampus, and limbic areas) and neocortex (temporal, frontal,
parietal, and occipital lobes) stimulation. Consistent with our
findings in Fig. 2, the prevalence of HFA increases and decreases
depended on frequency in all regions (LME Model: Frequency:
magnitude of all z's = 2.2—3.94, all p’s < 0.05). We then specifically
analyzed HFA decreases following 10—50 Hz stimulation and HFA
increases following 100—200 Hz stimulation because these stim-
ulation frequencies are most likely to cause each effect. We found
10—50 Hz stimulation in the neocortex caused a greater rate of HFA
decreases than it did in the MTL (Fig. 3D). Inversely, we found
100—200 Hz stimulation in the MTL caused a greater rate of HFA
increases than it did in the neocortex. This regional difference in the
effect of stimulation on HFA power was statistically significant
(Region x HFA change: F(1,1) = 18.42, p < 107%).



1190 U.R. Mohan et al. / Brain Stimulation 13 (2020) 1183—1195

Spatial spread of neuronal activity changes from stimulation

We next examined the spatial spread of stimulation-induced
changes in HFA. To do this, we measured the prevalence of HFA
increases and decreases as a function of recording electrodes’ dis-
tance from the stimulation site. Overall, the prevalence of HFA
power decreases and increases were greater for recording elec-
trodes near the stimulation site compared to distal electrodes
(Fig. 4A—D; Fig. S1). Although HFA increases were generally less
prevalent than decreases, the prevalence of HFA decreases fell off
more drastically with distance to the stimulation site as compared
to HFA increases (LME model: Distance x HFA change direction
interaction: z = 4.43, p < 107>, see Table S4D).
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Fig. 4. Spatial spread of neuronal activity changes. All plots show the mean percent
of recording electrodes that showed significant HFA power decreases (left) and in-
creases (right) binned by their distance from the stimulation site. (A) Comparison of
effects between depth and surface stimulation sites. Blue and red dotted lines indicate
corrected type 1 error rates of the percent of electrodes increasing or decreasing. All
error bars denote: +1 SEM. (B) Analysis for effects of stimulation frequency (10, 50, and
200 Hz) (C) Analysis for effects of stimulation amplitude (0—0.5, 0.5-1, 1-15, &
1.5—2 mA). (D) Analysis for effects of stimulation near white versus gray matter (see
Methods). (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)

We compared the spatial spread of HFA increases and decreases
separately for depth and surface stimulation (Fig. 4A). Stimulation
at both depth and surface sites showed that the prevalence of HFA
decreases diminished with distance at approximately the same
rate, but HFA decreases from surface stimulation were more prev-
alent across the brain (LME Model: magnitude of all
7's = 2.47-9.28, all p’s < 0.05, see Table S4D). Inversely, HFA power
increases from depth stimulation were more prevalent and showed
a greater distance effect than increases from surface stimulation
(Depth vs. Surface: z = 2.03, p = 0.04; Distance x Depth vs. Surface
interaction: z = 2.56, p = 0.01, LME model).

Next we examined the role of stimulation frequency on the
distance dependence of HFA power changes (Fig. 4B). For all fre-
quencies, HFA power decreases were most prevalent at recording
electrodes near the stimulation site. This effect was significantly
larger for stimulation at low frequencies (LME model:
Distance x Frequency: z= —3.11, p = 0.002). A related drop-off with
distance was also present for the sites that showed HFA power
increases (right panel); however, this effect was most prevalent for
200-Hz stimulation (Distance x Frequency: z = —2.42, p = 0.02,
LME model).

We also examined the role of stimulation amplitude in the
distance dependence of HFA changes (Fig. 4C). As in the above
analyses, the prevalence of HFA changes decreased with distance
from the stimulation site. However, the rate of this fall-off inversely
correlated with stimulation amplitude. For low stimulation am-
plitudes, HFA decreases were present at ~5% electrodes with dis-
tances >30 mm from the stimulation site, but for amplitudes at
>1 mA, ~10% of electrodes spaced at >30 mm showed HFA de-
creases. Both distance and amplitude had a statistically significant
effects on the prevalence of HFA decreases (Distance: z = —9.38,
p < 10719; Amplitude: z = 3.06, p = 0.002, LME model). This in-
dicates that larger stimulation amplitudes increase the spatial
spread of stimulation-induced HFA decreases. This type of distance
dependence was not evident in the sites that showed HFA increases
from stimulation (all p’s > 0.05, Fig. 4C, right panel).

Finally, we analyzed the spatial spread of HFA power changes
from white- versus gray-matter stimulation (Fig. 4D). This analysis
showed that the spatial spread of HFA decreases was more preva-
lent across the brain when stimulation was applied near gray
matter (left panel LME Model: magnitude of all z’s = 2.39—8.30, all
p’s < 0.05), and an opposite effect was present for HFA increases,
which were more prevalent when stimulating near white matter
(right panel LME model: Distance x White vs. Gray Matter inter-
action: z = 2.43, p = 0.02). Our results show HFA increases are
greater for stimulation on depth electrodes near white matter than
other areas, which supports approaches where clinicians select
stimulation sites based on tract location to bring about desired
changes in neuronal activity.

Stimulation-induced resetting of neuronal activity

In addition to identifying HFA power increases or decreases
from stimulation, we also observed a different phenomenon, in
which stimulation caused HFA power to adjust to a fixed level. In
contrast to the above-described sites that showed increases or
decreases in mean HFA power after stimulation, an electrode that
exhibited “HFA resetting” would show variable HFA power prior to
stimulation across trials that became tightly clustered after stim-
ulation. Therefore, to identify this phenomenon we compared the
variances of HFA power at each electrode between pre- and post-
stimulation intervals (rather than comparing the means as in
earlier analyses). Fig. 5A shows two example left temporal-lobe
recording electrodes that exhibited resets in HFA power from
stimulation. Each of these electrodes showed substantial variation
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version of this article.)

in HFA power before stimulation, with this variation decreasing
significantly afterward (both p’s < 107, F-test, Fig. 5B). The data in
this figure illustrate two characteristics of resetting: First, that the
recording electrodes that show HFA power resets are often spatially
clustered. Second, that HFA resetting does not immediately sur-
round the stimulation site, which could have been driven by
artifact.

To statistically characterize HFA resetting, we identified the
recording electrodes that showed a significant decrease in the
variance of HFA power from pre-to post-stimulation (F-test,
p < 0.05) with no change in mean (t-test, p > 0.05). Analogous to
the above analyses, we computed the proportions of electrodes that
showed significant resetting for each combination of stimulation
frequency and amplitude (Fig. 5C). This analysis suggested that HFA
resetting from depth stimulation site is slightly dependent on the
interaction of frequency and amplitude (Frequency x Amplitude
interaction: z = —1.98, p < 0.05, see Table S4A). The LME model did
not show a significant dependence for the prevalence of HFA
resetting according to the stimulation amplitude or frequency
alone (Depth and Surface: z's = 0.07—1.81, all p’s > 0.05).

We also examined the prevalence of HFA resetting as a function
of distance to depth stimulation sites. HFA resetting was greater at
recording electrodes near the stimulation site. For electrodes near
the stimulation site, the prevalence of HFA resetting was signifi-
cantly less than that of HFA decreases and greater than that of HFA
increases (Distance x Resetting vs. Increase vs. Decrease: z = 2.4,
p = 0.007, LME model; Fig. 5D). Additionally, we found that the
prevalence of HFA resetting was greater for stimulation in white
rather than gray matter (White vs. Gray Matter: z = 2.66, p = 0.008,
see Table S4D). In light of its distinctive characteristics, these results
indicate that stimulation-induced HFA resetting reflects a distinc-
tive neuronal phenomenon compared to stimulation-induced HFA
power increases and decreases. To assess whether stimulation in
epileptic regions affects HFA resetting, we compared the rate of HFA
resetting between stimulation in healthy and epileptic regions and
found no significant difference (z = 0.86, p = 0.39, rank-sum test).

Control analyses of stimulation artifact effects

While one cannot completely separate artifact from physiolog-
ical signals in clinical iEEG recordings, we took a two-stage
approach to identify and mitigate their potential impact on our
results. As described in the Methods, we ensured that electrical
artifacts from the activation of the stimulator did not impact our
HFA power calculations by measuring HFA choosing temporally
precise multitaper parameters to measure spectral power at an
interval that was separated in time from when the stimulator was
active. As shown in Figure S4, this approach successfully identified
reliable patterns of HFA power increases that had different time-
courses compared to stimulation artifacts.

We also examined whether our results were affected by artifacts
related to amplifier saturation. After stimulation concludes, many
recording electrodes show transient low-frequency deflections,
which could disrupt accurate power measurement. To minimize
the influence of voltage deflections on our results, as described in
the Methods, we removed both individual trials and recording
electrodes that exhibited large post-stimulation voltage changes
(Fig. S2). To further validate that our results were not correlated
with this kind of artifact, we performed the above population
analysis (Fig. 2A and B) using three different artifact-rejection
thresholds (Fig. S6). The relationship between HFA changes and
stimulation parameters remained present for all thresholds
(Table S4E), indicating that parameter-dependent HFA changes are
not a result of post-stimulation artifacts. We also measured the
prevalence of artifacts for each combination of stimulation ampli-
tude and frequency (Table. S3). Because artifact rates, did not
substantially vary across stimulation parameters, it supports our
view that the frequency dependence of HFA changes we observed
was not a result of stimulation artifacts. We also have confidence
that our results reflect neural signals because our characterization
of HFA changes matches the frequency dependence seen in animals
[61]. Additionally, the stimulation-induced HFA changes we found
interact with neuroanatomy—HFA increases were more prevalent
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when stimulating white rather than gray matter—which is a
pattern that is unlikely to appear as the result of electrical artifacts.

Discussion

Clinicians and researchers are increasingly interested in brain
stimulation because it provides a way to directly modulate ongoing
brain activity which could be used in the treatment of neurological
disorders. However, for brain stimulation to be used optimally,
stimulation should be targeted precisely according to the desired
outcome. One goal of our project was to guide selection of stimu-
lation parameters by characterizing—across space, frequency, and
amplitude—the neuronal effects of direct cortical stimulation in
humans. Our work indicates that effects of stimulation significantly
differ depending on the parameters used for stimulation despite
substantial variations in the effects of stimulation across subjects.
Together, our results indicate that we may achieve more effective
outcomes of stimulation by choosing parameters according to the
desired neuronal pattern.

A key result from our work is demonstrating that the neuronal
effects of direct brain stimulation in humans are frequency
dependent. While the general effect of stimulation on HFA was a
decrease in power, we demonstrated that high- and low-frequency
stimulation inversely impact neuronal activity, preferentially
causing HFA power increases and decreases, respectively (Fig. 2C).
In this way, our work helps explain prior studies that demonstrated
that the frequency of stimulation was an important factor in driving
specific clinical outcomes from stimulation. For example, when
using DBS for Parkinson’s disease, stimulation at frequencies over
90 Hz alleviated tremor while frequencies below 60 Hz aggravated
tremor [27,52,98]. Further, the use of stimulation to treat epilepsy
depends on frequency, such that stimulating at frequencies below
2 Hz and above 70 Hz reduced epileptic activity, whereas inter-
mediate frequencies had no effect [75,107]. Of particular relevance
to our work is the study by Logothetis et al. [61] who measured the
resultant changes in neuronal activity in various brain regions of
monkeys following microstimulation at a range of frequencies. This
study found that low-frequency stimulation caused decreases in
neuronal activity whereas high-frequency stimulation caused
mixed increases and decreases in different downstream regions,
which is consistent with our findings despite substantial method-
ological differences. Whereas we applied stimulation at macro-
electrodes in human epilepsy patients and measured HFA power,
Logothetis et al. [61] used microstimulation in the visual cortex of
normal monkeys and measured fMRI and single-neuron spiking.
Although the majority of stimulation sites in our study were in the
temporal lobe, we found that frequency-dependent patterns were
consistent across stimulation of different brain regions (See
Fig. 3D). Similarly, our amplitude-dependent HFA changes build
upon work from Crowther et al. [15], who measured gamma re-
sponses to single pulse cortical stimulation in humans and found
that the magnitude of positive responses depended on stimulation
amplitude.

A question that arises from these results is why stimulation at
low frequencies suppresses and stimulation at high frequencies is
more likely to activate. Quantitative models suggest that high-
frequency stimulation selectively activates fibers of passage and
axon terminals with low thresholds that would not normally be
activated by low-frequency stimulation [69]. This may occur
because high-frequency stimulation delivers a higher rate of charge
with shorter time between pulses, which increases mean spiking
rates because neurons have less time to hyperpolarize [8,41,70,84].
Inversely, low-frequency stimulation has been shown to induce
long-lasting hyperpolarization, which reduces overall firing [97].

By incorporating neuroanatomy, models may also explain our
finding of prevalent HFA decreases near the stimulation site, while
HFA increases were relatively more widespread (Fig. 4A—C). These
spatial variations may be explained by the anatomical organization
of the stimulated neurons. When stimulation activates axons,
which is more likely with high frequencies [69], models suggest
that excitatory effects can spread more broadly, following axonal
projections to other regions. Inversely, when stimulation impacts
cell bodies, the effects are likely to be inhibitory and spatially
limited [35,69,70].

It is notable that we found variability in HFA power changes be-
tween stimulation sites even within an individual. This result is
consistent with the idea that local and distal effects of stimulation
depend on the neuronal morphology surrounding the stimulation
site [10,56,83], specifically, the precise positioning of the implanted
electrode and its specific orientation relative to cortical layers or fi-
bers of passage. At the broadest level, our findings support the idea
that the effective use of brain stimulation should consider neuron
organization, thresholds, and neurotransmitters of an area to better
predict the downstream effects of stimulation [84]. This variation
that we found in the responses to stimulation at different sites might
help explain prior studies that showed diverse perceptual and
behavioral responses to stimulation between subjects and stimula-
tion locations [10,83,88]. Additionally, glial responses to implanted
electrodes, structural abnormalities associated with patients’
neurological conditions, and anti-seizure medications may also
contribute to variability to between patients and stimulation sites
[86]. Despite this variability, in 16% subjects, we found significantly
correlated patterns of HFA power changes across different stimula-
tion sites. This suggests that some individuals have distinctive
neuroanatomical patterns, perhaps involving connectivity or genetic
differences [28], that cause them to show consistent HFA changes
even across widespread stimulation targets.

We found that inhibitory and excitatory effects were relatively
more likely from stimulation in gray and white matter, respectively.
This result adds to a growing body of literature emphasizing that
behavioral and electrophysiological outcomes depend on the
proximity of stimulation to structural connections. In particular,
studies showed that positive behavioral outcomes result from
stimulation in white rather than gray matter. In particular, studies
reported improvement of memory specificity and depression
symptoms when applying stimulation specifically in white matter
[30,68,95,96]. Similarly, one recent study showed that white-
matter stimulation amplifies oscillatory theta coherence across
memory networks [91]. Additionally, studies in rodents show
similar results, demonstrating that microstimulation in white
matter was more effective for exciting distal neuronal populations
[78,79]. Our findings add to this body of work, by suggesting a
mechanism for white-matter stimulation to improve behavior, by
preferentially causing neuronal excitation. Recent modeling studies
determined patient-specific stimulation locations from predictions
of electrical-field generation based on patient tractography [65].
Going forward, it may be beneficial for clinicians to integrate
parameter selection procedures with patient-specific models to
guide stimulation locations relative to structural connections.

Our findings also help extend closed-loop, or responsive, neu-
rostimulation therapies currently used to treat intractable epilepsy
and Parkinson’s Disease to the treatment of cognitive disorders
[45,60,77,93]. Prior closed-loop stimulation studies aimed to
improve memory continuously monitored brain state and delivered
stimulation to increase or decrease a particular measure of
neuronal activity when it crossed a critical threshold [21,22,38]. Our
results inform which stimulation parameters are most likely to
change a specific biomarker in a desired direction. Besides using
stimulation to excite and inhibit, we observed the novel
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phenomenon of stimulation-induced HFA resetting. In contrast to
using stimulation to shift neuronal activity in one direction, the
stimulation-induced resetting indicates that targeted stimulation
can induce a specific state regardless of the level of neuronal ac-
tivity prior to stimulation. By leveraging stimulation-induced
resetting, we hypothesize that targeted white-matter stimulation
protocols can transition brain activity into particular states [92],
supplementing existing closed-loop methods that focus on shifting
ongoing neuronal patterns in one direction.

Although we conducted our work with electrodes implanted in
surgical patients, our results also have implications for non-
invasive brain stimulation. Much like direct electrical stimulation,
transcranial magnetic stimulation (TMS) and transcranial electrical
stimulation (TES) have been shown to produce mixed excitatory
and inhibitory responses. The direction of the changes in neuronal
activity caused by TMS and TES have been shown to depend on
parameters that were analogous to those we tested, such as the
location, frequency, and amplitude of stimulation [2,5,24,32,33]. In
fact, Sokhadze et al. [89] show the effects of TMS on gamma os-
cillations depend on stimulation frequency such that 10—15 Hz
stimulation often excites while 0.5—2 Hz frequencies inhibit. These
frequency-dependent responses suggest that TMS may produce
analogous excitatory and inhibitory responses to different stimu-
lation frequency ranges when compared to our results. Further-
more, non-invasive brain stimulation studies also found substantial
inter-subject variability [62,103], which is also consistent with our
results. Given these similarities, our results support the approach of
customizing non-invasive stimulation parameters for each
individual.

A focus of many brain stimulation therapies is to recapitulate a
target neuronal pattern [21,43,44]. Because we show the stimulation
parameters that cause different types electrophysiological signals,
our work offers guidelines for clinicians to select stimulation fre-
quencies and amplitudes that recreate particular target patterns. In
this regard, the most important features of our results are (1) that
high- and low-frequency stimulation are associated with HFA power
increases and decreases, respectively, and (2) that high stimulation
currents cause HFA power decreases across broader cortical regions.
These patterns help explain key features of previous neuro-
modulation work. For example, in one study we found that stimu-
lation at a particular site caused a patient to spontaneously recall an
old autobiographical memory, and, notably, this site showed HFA
decreases when the patient remembered the memory normally [39].
Our findings help explain why this occurred, because they link the
50-Hz stimulation that was used to HFA power decreases that
matched the neuronal pattern associated with that memory. Further,
our results help explain the recent finding that high-frequency
stimulation in the LTL can help improve episodic memory encod-
ing [21,47]. Normally, successful learning of episodic memories is
associated with elevated HFA power [11]. Therefore, our results help
explain that high-frequency stimulation improved memory encod-
ing because it recreated the elevated HFA power that was normally
associated with successful encoding.

Conclusions

We systematically characterized brain-wide responses to stimu-
lation on a large scale and found changes in neuronal activity depend
on stimulation frequency, amplitude, region, and proximity to white
matter. Current standard functional stimulation mapping protocols
do not select parameters based on specific responses in line with the
desired clinical outcome [10]. In many cases, the stimulation pa-
rameters chosen for a given task are modeled after the ones used in
other protocols or in other subjects [64]. Our findings do not elimi-
nate the current clinical procedure of iteratively testing parameters

to select patient-specific optimal stimulation parameters. They do,
however, contributed the first general guidelines from a large-scale
dataset in humans for the types of electrophysiological effects that
might be expected from stimulating at different parameters. Addi-
tionally, this analysis framework provides a systematic method of
evaluating brain-wide neuronal responses to stimulation at different
parameters on an individual level as well as across subjects with
variable stimulation protocols. A future avenue building upon this
work may combine our observations of electrophysiological effects
of stimulation with modeling and knowledge of behaviorally linked
neuronal patterns so that clinicians and researchers can design more
targeted therapeutic stimulation protocols to more effectively treat
neurological and psychiatric disorders.
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