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Abstract

Investigations into how individual neurons encode behavioral variables of interest

have revealed specific representations in single neurons, such as place and object

cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity.

However, as most experiments examine neural activity within individual tasks, it is

currently unclear if and how neural representations change across different task con-

texts. Within this discussion, the medial temporal lobe is particularly salient, as it is

known to be important for multiple behaviors including spatial navigation and mem-

ory, however the relationship between these functions is currently unclear. Here, to

investigate how representations in single neurons vary across different task contexts

in the medial temporal lobe, we collected and analyzed single-neuron activity from

human participants as they completed a paired-task session consisting of a passive-

viewing visual working memory and a spatial navigation and memory task. Five

patients contributed 22 paired-task sessions, which were spike sorted together to

allow for the same putative single neurons to be compared between the different

tasks. Within each task, we replicated concept-related activations in the working

memory task, as well as target-location and serial-position responsive cells in the nav-

igation task. When comparing neuronal activity between tasks, we first established

that a significant number of neurons maintained the same kind of representation,

responding to stimuli presentations across tasks. Further, we found cells that chan-

ged the nature of their representation across tasks, including a significant number of

cells that were stimulus responsive in the working memory task that responded to

serial position in the spatial task. Overall, our results support a flexible encoding of

multiple, distinct aspects of different tasks by single neurons in the human medial

temporal lobe, whereby some individual neurons change the nature of their feature

coding between task contexts.
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1 | INTRODUCTION

A key question in neuroscience concerns the nature of the informa-

tion represented by the activity of individual neurons. A remarkable

collection of studies have demonstrated how individual neurons

can encode specific variables of interest at various levels of complex-

ity, across perception, motor control, and cognitive tasks, ranging

from orientation-tuned cells in primary visual cortex (Hubel &

Wiesel, 1962), to abstract invariant representations of specific identi-

ties, such as the ‘Jennifer Anniston’ neuron (Quiroga et al., 2005).

However, not all individual neurons encode with such specificity, with

many experiments finding cells with conjunctive encoding, whereby

an individual neuron responds to the combination of two or more fea-

tures (Duvelle et al., 2023) and/or be even more broadly tuned to a

mixture of multiple variables (Fusi et al., 2016; Rigotti et al., 2013).

Collectively, this literature establishes that the brain contains a mix-

ture of ‘specialist’ cells, which are narrowly tuned to a specific fea-

ture, as well as ‘generalist’ cells, which have broader mixed tuning

across multiple variables, with many remaining open questions regard-

ing if and when different encodings shift or remap entirely.

Apparent differences in the specificity of neural representations

are at least partly related to regional differences. Where primary sen-

sory areas are generally thought to be specifically tuned to incoming

sensory information of specific modalities (though see a notable

example of multi-sensory responses in V1 [Knöpfel et al., 2019]),

increasingly ‘higher-order’ areas are thought to encode increasingly

abstract constructs that could be more broadly tuned across tasks and

contexts. The prefrontal cortex, for example, is thought to engage in

high-level, abstract representations that can be flexibly applied across

task contexts (Behrens et al., 2018; Duncan, 2001). Overall, there is

thought to be a hierarchy of encoding from specialized neurons in pri-

mary sensory areas that are not expected to change their representa-

tion, to higher-order areas that encode more abstract features, with

more flexibility to encode multiple features, both simultaneously

and/or across time. Further understanding the consistency of repre-

sentations, however, requires dedicated work that evaluates neural

activity across task contexts.

In the cortex, some experiments have examined different task

variants within a cognitive domain, to investigate how individual neu-

rons change their activity in relation to different task demands. For

example, in recordings in the parietal cortex from mice, neural

responses across two different visual decision tasks engaged largely

distinct populations of neurons (Lee et al., 2022). However, when

using two different categorization tasks in monkeys, a broadly similar

neural representation was found across the two tasks (Mohan

et al., 2021). In another experiment, asking human participants to flex-

ibly switch between a recognition memory and categorization task led

to different population-level representations of the task demands in

the medial frontal cortex (Minxha et al., 2020). Collectively, these

studies are beginning to establish how neurons change their represen-

tations across variations in task context, however the limited results

thus far suggest there are differences across species, cognitive

domains, and anatomical locations.

Within the discussion of neural representations, the medial tem-

poral lobe (MTL) is a structure of particular interest due to its involve-

ment in multiple cognitive processes. In spatial navigation, the MTL

has seemingly ‘specialist’ cells that encode specific locations in space

(place cells), as well as location- and navigation-related features such

as head direction, speed, and environment borders (Moser

et al., 2017). While much of the spatial navigation literature is in

rodents, space-related representations have also been found in non-

human primates (Rolls & Wirth, 2018), as well as recent demonstra-

tions of place, target-location, and sequence encodings in single-

neurons in humans (Miller et al., 2013; Tsitsiklis et al., 2020). In inves-

tigations with visually presented stimuli, the MTL has also been found

to have neurons that respond to broadly tuned object categories as

well as to highly specific concepts, which is also thought to relate to

memory processes (Quiroga, 2012; Rutishauser et al., 2021). Despite

a large amount of research on both the spatial navigation and memory

functions of the MTL, this research is typically done in distinct labs

and experiments, with the relationship between memory and spatial-

navigation functions of the MTL remaining a debated topic. Specifi-

cally, it is unclear how the firing patterns of individual neurons shift

between these different processes.

Empirical investigations in the MTL have demonstrated that

single-neuron responses reflect task context. For example, rodent

place cells show attention-like modulation (Fenton et al., 2010) and

neurons can shift their representations across learning (Moore

et al., 2021). In primates, task manipulations have been used to dem-

onstrate neurons that encode place-specific reward associations

(Rolls & Xiang, 2005), and to show how spatial encoding across an

environment changes in a task-dependent manner (Gulli et al., 2020).

In humans, an early study reported a small number of MTL neurons

that showed responses to words and also to unrelated faces (Heit

et al., 1988). More recently, studies have examined responses to the

same stimuli based on task demands, finding, for example, differences

in responses across regions to different task demands when viewing

the same faces (Cao, Todorov, et al., 2022). Overall, these findings

emphasize that MTL neurons respond across multiple cognitive

domains and in task specific ways.

The previous findings, whereby the MTL has been found to engage

in seemingly distinct functions across spatial navigation and memory

has led to the suggestion that this structure may engage in representing

‘cognitive maps’ whereby individual neurons represent features or rela-

tions within a high-dimensional state space (Behrens et al., 2018;

Schiller et al., 2015; Tolman, 1948). Under this hypothesis, the MTL

constructs ‘maps’ of features of interest within which physical space

may simply be a special case of a more general mechanism that can be

applied to other ‘spaces’. In a physical context, the activity of place

cells represents locations in the map, representing physical space. In a

different context, individual MTL neurons are predicted to be able to

represent elements within other feature spaces, such that they can flex-

ibly engage in different kinds of representations based on task

demands. This perspective is supported by studies such as one that

finds ‘frequency-place cells’ wherein individual neurons represent loca-

tions in frequency space during a sound modulation task (Aronov
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et al., 2017). This framework is also consistent with perspectives

whereby the hippocampus can be thought of as a general relational

processing system which can be applied to organizing relations across

space, time, and conceptual dimensions (Eichenbaum & Cohen, 2014).

Empirically, the specificity, flexibility, and consistency of neural

responses can be examined by using different tasks while comparing

the responses of a specific neural population across stimuli and task

contexts. However, since the vast majority of experiments only inves-

tigate neural representations within specific behavioral contexts, it is

generally unclear if and when individual neurons maintain and/or

change representation across different contexts. Experiments employ-

ing multiple tasks are limited by practical challenges related to training

and testing across multiple distinct tasks while recording from the

same neurons, especially for tasks from across different cognitive

domains. These limitations may be particularly difficult if attempting

to train animal models to flexibly switch between completely distinct

tasks. Such experimental designs are therefore a situation in which

human participants may be ideal due to their capacity to rapidly learn

and switch between distinct behavioral contexts.

Collectively then, the existing evidence suggests that the brain

appears to use a hierarchically organized combination of ‘specialist’ and
‘generalist’ cells. However, beyond this general conceptualization, there

are numerous outstanding questions relating to the nature of how indi-

vidual neurons encode features across different task contexts. This

question is particularly salient in the MTL, in which there is a strong

theoretical motivation for predicting that individual cells engage in dis-

tinct representations across different contexts as part of domain-

general ‘cognitive maps’. This is empirically well demonstrated when

considering different contexts within the same domain (e.g. remapping

across contexts in spatial experiments (Kubie et al., 2020; Kubie &

Muller, 1991)), however there is currently little empirical investigation

comparing across domains such as between a spatial navigation task

and a non-spatial visual memory task. To what extent do individual

MTL neurons maintain a fixed encoding, responding only to a narrowly

tuned feature across different behavioral contexts and disengaging if

that feature is not present? Alternatively, can individual neurons be

flexibly recruited to encode task-relevant variables, with potentially dif-

ferent representations based on behavioral context?

To address these questions, in this study, we investigate how the

representations of individual neurons in the MTL change across task

context. We do so using a paired-task design in human participants,

while recording single-neuron activity from implanted electrodes. By

comparing neural activity within and between distinct tasks, we

hypothesized that we would observe individual neurons switch

between distinct representations across different tasks. This is indeed

what we observed, as we found both neurons that maintained a con-

sistent representation to stimuli that were presented across tasks, as

well as some neurons that engaged in seemingly distinct representa-

tions between the two tasks. This implies that some ‘specialist’
encodings may be specific to task context, and that (at least some)

MTL neurons can switch the kind of feature that they encode, which

may relate to the MTL as enacting a feature-general ‘cognitive map’
rather than being purely specialized within particular domains.

2 | METHODS

2.1 | Single-neuron recordings

The participants in our study were patients with chronic, medication-

resistant epilepsy who volunteered to participate in our study while

undergoing presurgical monitoring with implanted electrodes to local-

ize epileptogenic regions. Patients were eligible for participation in

this study if the clinical monitoring plan included electrode coverage

in the medial temporal lobe (MTL), including unilateral or bilateral

amygdala and/or hippocampus. Eligible participants were implanted

with Behnke-Fried electrodes, which include clinical macro-electrodes

as well as 40-μm microwires which extend from the macro electrode

tip and can record single-neurons. Five patients (4 female, ages 29–

53 years old) participated, for a total of 22 recording sessions (Table 1).

Recordings were collected at J. W. Ruby Memorial Hospital, affiliated

with West Virginia University, and all patients provided informed con-

sent. Patients had between 3–6 Behnke-Fried electrodes implanted,

each of which contained a bundle of 8 micro-wires. Recordings from

the microwires were collected at 32 kHz using a NeuraLynx Atlas

recording system (Neuralynx, Bozeman, USA) with full bandwidth

recordings (0.1–9 kHZ). The processed data analyzed in this study is

openly available, including the data for the one-back task, which is

available from the OSF archive (DOI: 10.17605/OSF.IO/824S7;

https://osf.io/824s7/), as part of a larger dataset (Cao, Lin, et al., 2022)

and the data from the Treasure Hunt task, which is available from

the DANDI archive (ID: 000468; https://dandiarchive.org/dandiset/

000468). The code used to analyze the data is also available in the pro-

ject repository (https://github.com/HSUpipeline/AnalyzeTH).

2.2 | Experimental tasks

Participants in our study performed a paired-task session in which

they completed a visual working memory task, which was immediately

followed by a spatial navigation and episodic memory task. The visual

working memory task was a one-back paradigm, which is commonly

used to test how participants maintain and manipulate information in

working memory (Cao et al., 2021; Cao, Wang, et al., 2022). The spa-

tial navigation task is a 3D virtual stimulus-location associative mem-

ory task called Treasure Hunt (TH), developed in Unity, which was

previously used to study various aspects of human spatial memory

and electrophysiology (Miller et al., 2018; Tsitsiklis et al., 2020). Both

tasks were played on bedside laptops, with participants pressing the

spacebar on a keyboard to respond in the one-back and using a sepa-

rate joystick to control movements in the Treasure Hunt task. In each

paired-task session, participants typically started with the one-back

task first and played Treasure Hunt immediately after, with short

breaks between tasks if necessary.

Each of these tasks could occur in one of two versions, a “face”
version where presented items were famous faces, or an “object” ver-
sion where items were images of general objects. Within a single

paired-task session, the stimuli type was always consistent across
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tasks (eg. the object version of the one-back task was always followed

by the object version of Treasure Hunt). In the “object” version of the

one-back task, 10 images of objects from 50 categories were taken

from the ImageNet database (Deng et al., 2009). This was paired with

the standard version of Treasure Hunt in which stimulus items are 3d

rendered images of everyday objects. In the faces version of the one-

back, images of celebrities were taken from the CelebA dataset (Liu

et al., 2015), selecting identities across genders and races. To create a

“faces” version of treasure hunt, stimuli were replaced with a selec-

tion of face images that were also used in the one-back task. In the

one-back task, for both versions of the task, we selected 50 identities

and object categories with 10 images for each, which varied in low-

level features such as orientation, luminance, and background, result-

ing in 1000 images in total. The same set of stimuli were used across

all patients.

We used a one-back task with human faces or objects as

described in previous studies (Cao et al., 2021; Cao, Wang,

et al., 2022). Stimuli were presented using MATLAB with the Psy-

chtoolbox 3 (Kleiner et al., 2007) running a laptop computer with a

screen resolution of 1600 � 1280. In each trial, a single image was

presented at the center of the screen for 1 s. The interstimulus-

interval (ISI) was uniformly sampled between 0.5 and 0.75 s. Patients

were instructed to respond by pressing the spacebar if the current

image was identical to the immediately preceding image. Patients

were instructed to respond after the image disappeared, to avoid

motor activity during image presentations. One-back repetition pre-

sentations happened on 9% of trials. Other than repetition trials, each

individual image was presented once, with the order of presented

images being randomized for each patient. All analyses were done

excluding the one-back repetition trials, in order to have an equal

number of responses for each image.

The Treasure Hunt spatial navigation and memory task was used,

as described in previous studies (Miller et al., 2018; Tsitsiklis

et al., 2020). In each trial of Treasure Hunt, participants use a joystick

to navigate a rectangular arena on a virtual beach (dimension 100 x

70 virtual units) and encounter treasure chests that can contain items.

Participants are instructed to remember the location of the presented

items, so that they can later report the location of each encountered

item. Chests appear in the arena one at a time with randomized loca-

tions across trials. There are typically 5 blocks of trials in a complete

run of Treasure Hunt, where each block has 8 individual trials, to a

total of 40 trials. Due to the time constraints of our paired-task ses-

sion, most Treasure Hunt runs were not a complete session, with most

runs instead including 3 complete blocks (24 trials). A total of

22 paired-task sessions were included and analyzed (TH-face: 10 ses-

sions, average of 23.40 trials (range: 8–40); TH-object: 12 sessions,

average of 25.67 trials (range: 24–32)).

Each trial of Treasure Hunt consists of two phases–a navigation/

encoding phase, and a retrieval phase. During the navigation phase,

participants are first placed at one end of the arena, from which they

can navigate freely using the joystick. They are instructed to navigate

to a series of chests that are presented serially in the arena. Upon

reaching a chest, players are rotated to the front of the chest, at which

point it opens and reveals either an item contained in the chest, which

is presented for 1.5 s, or the chest is shown to be empty. There are

4 chest presentations per trial, 2 or 3 of which are full chests. After

reaching all four chests of a trial, participants are transported to one

end of the arena, either the same side as the navigation start or the

opposite side, indicating the end of the navigation phase. Participants

then play a distractor task which is a computerized version of the

“shell game”. After the distractor game, the recall phase starts in

which participants are prompted with each of the items from the trial

in a random order. They are first asked to rate their confidence level

of whether they remember the location of the encountered item

(response options: “Yes”, “Maybe” or “No”). They are then asked to

respond with the exact location in the arena they encountered the

item by maneuvering a crosshair with the joystick. At the end of the

recall period, participants receive feedback regarding whether each

response is close enough to be considered correct, and receive points

accordingly. A response is considered correct if it is within 13 virtual

units of the true object location.

2.3 | Data preprocessing

After data collection, each paired-task session was preprocessed

together such that the same putative single neurons could be isolated

and analyzed across both tasks. Single-neuron activity was identified

and spike sorted using the OSort algorithm (Rutishauser et al., 2006).

Spike times were then extracted from the full session for each task,

TABLE 1 Subject overview

Subject

ID Sex Age Race Electrode location

Number of

BF electrodes

Number of

sessions

Number of

total units

Number of

kept units

001 F 29 Caucasian Bilateral amygdala and hippocampus 6 4, 2 286, 229 245, 134

002 F 53 Caucasian Bilateral amygdala and hippocampus 5 2, 3 156, 116 120, 95

003 M 49 Caucasian Bilateral amygdala and hippocampus 4 1, 2 34, 86 18, 44

004 F 31 Caucasian Bilateral amygdala and hippocampus 4 2, 4 262, 380 183, 264

005 F 26 Caucasian Left amygdala and left hippocampus 3 1, 1 77, 45 41, 30

Total 22 10, 12 815, 856 608, 565

Note: Details of the data that was included in this study. For the columns with multiple entries, each entry is organized as (face task version, object task

version). BF: Behnke-Fried.
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such that each task could be analyzed independently. Only neurons

with an average firing rate greater than 0.15 Hz across both tasks

were kept for analysis, keeping a total of 1173 neurons across the

project (face-version: 608 neurons; object-version: 565 neurons).

Spike sorting metrics were applied to evaluate the quality of the spike

sorting solutions (Supplemental Figure 1), following previous work

(Cao, Wang, et al., 2022). In the analysis, neurons from each recording

session were considered unique, even if they came from the same

subject. We note that the same participants did both stimulus ver-

sions of the paired-task sessions, such that there could be overlapping

neurons in the two datasets. Notably, the two stimulus versions were

analyzed independently. For the one-back task, single-neuron activity

was associated with the behavioral timestamps and analyzed using

custom scripts in the Matlab programming language (Mathworks, Inc,

USA). For the Treasure Hunt task, single-neuron activity was orga-

nized together with behavioral information into Neurodata Without

Borders (NWB) files (Rübel et al., 2022) which were then analyzed in

the Python programming language, using the spiketools module for

analyzing single-neuron activity (Donoghue et al., 2023). After each

task was analyzed, the activity patterns and task activations within

each task were then compared across tasks in order to examine

single-neuron activity across task contexts.

2.4 | Neural data analyses

Across both tasks, we analyzed neural responses that were potentially

consistent across both tasks, such as responses to stimuli, and also

responses that were specific to each task, for example, identity

responses in the one-back task (in which multiple images of the same

persons / objects are shown) and place and sequence-related

responses in the Treasure Hunt task. To test for stimulus-related

responses, we used t tests comparing firing pre & post stimulus onset.

To analyze cell responses to other task features, we used ANOVAs.

For all ANOVA tests, we used surrogates to evaluate statistical signifi-

cance, creating 1000 surrogates by circular shifting spike times by a

random offset, recomputing the ANOVA of interest, and computing

the f-statistics output from the real data as compared to the distribu-

tion of surrogates to compute an empirical p-value. For each analysis,

individual neurons were considered significant at an alpha value of

0.05 (if the f-value calculated on the real data was at or above the

95th percentile of the f-values from the shuffled surrogate data). For

all analyses, at the group level we applied one-sided binomial tests to

evaluate whether the number of neurons detected to have a signifi-

cant response exceeded the number expected by chance.

In the one-back task, we analyzed neurons for non-selective

responses to stimuli, as well as for selective responses to specific

stimuli, following previously described procedures (Cao et al., 2021;

Cao, Wang, et al., 2022). To detect stimulus-responsive neurons, we

used a paired t test (p < .05) comparing the firing rate during baseline

(�0.25 –0 s relative to stimulus onset) versus stimulus period (0.25–

1.25 s after stimulus onset). For the selection of identity neurons, we

first used a one-way ANOVA (p < .05) to identify neurons that

responded differently to different identities. In addition, we applied

an additional criterion requiring that the neural response of one iden-

tity/category was at least two standard deviations (SD) above the

mean of the neural responses of all others, which also allowed for

identifying which identity/category the neurons responded to. These

procedures are consistent with criteria employed in other related

studies to detect responses to specific identities (De Falco

et al., 2016; Rey et al., 2020).

After detecting neurons with responses to particular identities or

categories, we employed a series of control analyses to further exam-

ine these neurons. We assessed the selectivity of each neuron to dif-

ferent identities using an identity selectivity index defined as the d'

between the most- and least-preferred identities (Grossman

et al., 2019). This was computed as (μbest�μworst/√(0.5*(σ
2
best +

σ2worst))), wherein μbest, μworst and σ2best, σ
2
worst denote the mean fir-

ing and variance of firing rate for the most- and least-preferred identi-

ties, respectively. We also computed a depth of selectivity (DOS)

measure to summarize the responses of identity neurons, creating a

scale that varies from 0, indicating equal responding to all identities,

to 1, denoting exclusive responses to one identity but none of the

others (Minxha et al., 2017; Rainer et al., 1998; Wang et al., 2018).

The DOS measure was quantified as (n-(Σ(Rj / Rmax)/n-1), where n is

the number of identities or categories (n = 50), Rj is the average firing

rate to identity j, and Rmax is the maximum average firing rate across

all identities. Finally, for each neuron, we also calculated the response

ratio for each face/object identity. To do so, the responses of all iden-

tities were first divided by the response of the most preferred identity

and then ranked from the most preferred to the least preferred, such

that the response ratio of the most preferred identity is always 1. We

compared response ratio for each ordered identity between identity

vs. non-identity-selective neurons using two-tailed unpaired t tests

(corrected for multiple comparisons using false discovery rate (FDR)

(Benjamini & Hochberg, 1995). A steeper change from the best to the

worst category indicates a stronger identity selectivity. Note that

these measures were used to quantify the properties of identity neu-

rons and compare them to non-identity neurons that were selected

by the ANOVA procedure, and were not used to select identity

neurons.

In the Treasure Hunt task, overall accuracy was evaluated based

on the number of recall responses that were evaluated by the game as

correct, based on the 13 virtual unit threshold. Note that given the

arena size (100 � 70 virtual units), this a conservative threshold, such

that responses considered incorrect by this metric are often still close

to the target area. For the stimulus related responses, in Treasure

Hunt, this relates to chest opening events, when stimuli are pre-

sented. We used t tests to evaluate a significant change of firing, com-

paring the 1-second pre and post chest opening time, specifically for

full chests, which contain presented stimuli.

To examine potential space-related neural responses in Treasure

Hunt, we analyzed the data from the navigation periods. We tested

for both place cells (neurons that encode self-position [Ekstrom

et al., 2003]), as well as spatial-target cells (neurons that encode

remote locations [Tsitsiklis et al., 2020], similar to spatial view cells

604 DONOGHUE ET AL.
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seen in primates [Rolls & Wirth, 2018]), both of which are allocentric

representations. For the space related analyses, we first binned the

rectangular environment into a grid such that we could assign the

position of the subject, the position of the targets (chests) and neural

activity as relating to particular bins. This allowed us to examine rela-

tionships between neural firing and the subject's and/or target's

positions. In doing so, we used a minimum occupancy of 1 s, and

excluded stationary periods (if the speed was lower than 5x10�6 vir-

tual units/s) for a bin to be included in any subsequent analyses.

After these exclusions, we computed the average firing rate in each

grid by binning the associated spikes based on the position of the

player or of the targets respectively. For place cell analyses, a spatial

binning of 5-by-7 across the navigable range was used to associate

spiking with the player's position. For target cell analyses, a binning

of 2-by-4 across the possible chest range was used to associate spik-

ing with the target destination. One-way ANOVAs were used to

evaluate whether firing rates were significantly modulated by subject

or target spatial location, assessed using the aforementioned surro-

gate procedure. For visualization purposes, we smoothed the firing

rate heatmaps by binning into a finer 5-by-8 grid, with a Gaussian fil-

ter with a 1.1-bin SD.

We additionally tested for sequence related neural responses,

examining neural activity across the sequence of chests that are pre-

sented per trial, using the navigation data. We tested for modulations

of firing rate by serial position, using an ANOVA procedure to evalu-

ate whether each neuron's firing rate during navigation was signifi-

cantly modulated by the serial position of the four chests that were

presented per trial. To do so, for each of the four chests per trial, neu-

ral activity was analyzed from chest onset to chest encounter (arriving

at the chest, but before it opens), calculating the firing rate per chest

serial position. For visualization purposes, time values were normal-

ized such that raster plots could be shown across trials for which the

navigation time per chest may not be the same.

After analyzing cell responses within each task–including

stimulus-related responses in both tasks, identity and object category

responses in the one-back task, and place, target, and serial position

related responses in the Treasure Hunt task–we next tested for inter-

actions betweens neuronal representations across tasks. Specifically,

we tested for an over-representation of neurons with representation

A in the one-back task and representation B in the Treasure Hunt

task, across all analyzed representations ‘A' and ‘B'. We did so by

computing the number of neurons that overlapped across each task,

as related to the number of neurons with that representation within

each task, and evaluated the statistical significance of the overlap with

a chi-square test. This procedure allowed for evaluating whether there

was an over-representation of neurons with a particular representa-

tion in one task and a similar or different representation in the other

task. As well as comparing the number of identified neurons, we also

examined the full set of statistical test values for each analysis (either

t-values or f-values, depending on the analysis), and compared them

between analyses. For each combination of task responses, we visual-

ized the relationship between the statistical values and computed the

spearman rank correlation between them.

To visualize potential relationships between responses to differ-

ent features, we did a series of simulations. Each simulation consisted

of a bivariate distribution, representing responses to ‘task 1’ and ‘task
2’, with 500 values per task, simulated with different relationships

between simulated task responses. To simulate correlated responses,

we simulated bivariate normal data with either a correlation of

r = 0.85 (correlated example) or r = 0 (uncorrelated example). To sim-

ulate data with task specific responses, univariate normal data was

first independently simulated for each task response, and then com-

bined such that individual data points responded to one or the other

task, split evenly. Finally, to simulate a combination of task-specific

and task-general responses, we combined 80% of data points sampled

as task specific responses with 20% sampled as correlated responses.

Each of these simulated cases creates distributions with idiosyncratic

properties that can be used to visually compare to the observed set of

responses in the empirical data. The full set of parameters used to

simulate the data is available in the project repository.

3 | RESULTS

In this project, we used a paired-task session (Figure 1a), in which

5 neurosurgical patients completed 22 paired task sessions consisting

of a working memory one-back (OB) task followed by the Treasure

Hunt (TH) spatial navigation task (Figure 1a,b). There were two ver-

sions of these paired-task sessions, one using face stimuli and the

other using object stimuli. We recorded from implanted microwires

during the paired task session, that were preprocessed together such

that the same single-neurons could be compared across both tasks

(Table 1; face-version: 608 neurons, object-version: 565 neurons),

across the hippocampus and amygdala (Figure 1d). Within each task,

single-neuron responses were analyzed based on previous analyses of

these tasks, finding stimulus-related and identity related responses in

the one-back task (Cao et al., 2021; Cao, Wang, et al., 2022) and

space- and sequence-related responses in the Treasure Hunt task

(Tsitsiklis et al., 2020). We then compared responses across the two

tasks, identifying neurons that have task-specific responses, neurons

that maintain a representation across task contexts, and neurons that

switch representations between tasks.

3.1 | One-back results

Behaviorally, participants performed consistently well at the n-back

task, both in terms of accuracy of repetition detection (Figure 1c; OB-

face: 70.18% ± 21.52 [mean ± 1 standard deviation across sessions];

OB-object: 66.52% ± 23.98), and reaction time (OB-face: 203.7

± 145.4 ms; OB-object: 118.7 ± 101.1 ms). Comparing between

stimulus version, there was no significant difference in accuracy

(t(20) = 0.38, p = .71, unpaired two-sample t test) or reaction time

(t(20) = 1.61, p = .12, unpaired two-sample t test) between the face

and object versions of the one-back task. Analyzing the neural data,

we first examined whether there were stimulus reactive cells with
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a significant activation for presented images, using paired t tests

(Figure 2a,d). We detected a significant number of stimulus-responsive

cells across both task variants (Figure 2g; OB-face: 102/608 (16.78%),

p < 10�25, one-sided binomial test; OB-object: 69/565 (12.21%),

p < 10�10, one-sided binomial test).

We subsequently analyzed neural responses for cells that

responded selectively to individual identities (people or objects) using

1-way ANOVAs (see methods for details; Figure 2b,e). We found a

significant number of identity cells in both task variants (Figure 2h;

OB-face: 51/608 (8.39%), p = .0003, one-sided binomial test; OB-

object: 83/565 (14.69%), p < 10�17, one-sided binomial test). To fur-

ther examine the identity neurons, we compared selective and non-

selective cells on several measures, including a depth of selectivity

index, an identity selectivity index, and on differences in response

ratios (see methods). As compared to non-selective neurons, identity-

neurons had a significantly higher depth of selectivity index, a signifi-

cantly higher identity selectivity index, and a significantly higher dif-

ference in response ratios between the first and second most-

preferred identities (Figure 2c,f; all p's < .05, two-tailed unpaired

t test), indicating that their response was selective to specific face or

object identities.

3.2 | Treasure hunt results

In the Treasure Hunt task, we measured performance on each trial

based on the distance between the subject's response location to the

item's actual position. Participants responded accurately on �33% of

trials (Figure 1c; TH-face: 33.0% ± 15.50 [mean ± 1 standard devia-

tion across sessions]; TH-object: 34.2% ± 19.77). There was no signifi-

cant difference in performance between that face and object versions

of TH (t(20) = �0.15, p = .88, unpaired two-sample t test). Analyzing

the neural data, we first tested for stimulus responsive cells during the

chest-opening events (Figure 3a,d), finding a significant number of

stimulus-responsive cells (Figure 3g; TH-face: 108/608 (17.76%),

p < 10�29, one-sided binomial test; TH-object: 61/565 (10.80%),

p < 10�7, one-sided binomial test).

We next looked for space-related representations, including firing

patterns that related to the subject's location as well as spatial target

locations. We first looked for place cells, by examining firing rates in

relation to the player's position in virtual space, and although there

were some individual neurons that passed the statistical test, overall

there was not a significant number of place cells in this task (TH-face:

28/608 (4.61%), one-sided binomial test p = 0.6983; TH-object

(a)

(c) (d)

(b)

F IGURE 1 Paired-task session with combined spike sorting. (a) Overview of the paired task session including a one-back task (left) and
Treasure Hunt task (right), each of which had versions with either face (top; blue) or object (bottom; orange) stimuli. The time trace represents the
neural recordings that were recorded across both tasks in a combined session, showing an excerpt of a microwire recording with examples of
individual action potentials (indicated by arrows). (b) A top down representation of the Treasure Hunt arena, showing the layout and an example

trial with four chests. Note that this view is not shown to participants, and during gameplay each chest is presented serially. (c) Behavioral
performance for the one-back (left) and treasure hunt (right) tasks. (d) Number of identified neurons across stimulus variants (left), anatomical
region (middle), and hemisphere (right).
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(a) (b) (c)

(d)

(g) (h)

(e) (f)

F IGURE 2 Individual neurons in the one-back task respond to stimuli, individual identities, and object categories. (a–f) Responses in the one-
back task, for the face (a–c) and object (d–f) versions. Raster plots show neuronal responses to 500 faces (a, b) or objects (d, e). Each identity is
coded by different colors. Trials are aligned to the stimulus onset (gray line) and are grouped by individual identity. (a,d) Example neurons showing
a stimulus related increase in activity for face (a) and object (d) stimuli. (b,e) Example neurons with responses to specific identities (b) or object
categories (e). Bar plots show average response for each identity and error bars denote ±SEM across face or object examples. Sample stimuli from
encoded identities are displayed on top of the bars. (c,f) Group analyses of identity/category-selective neurons (S: selective; N: non-selective),
including depth of selectivity (DOS; top left), identity selectivity index (top-right), response ratio (bottom left), and difference in response ratio
between the first and second most preferred identities (bottom-right). The response ratio plot shows ordered average responses from the most-
to the least-prefered identity, normalized by the response to the most-prefered identity. The black bar refers to the significant difference
between identity-selective vs. non-selective neurons (two-tailed unpaired t test, p < .05, corrected by FDR for Q < 0.05). Asterisks indicate a
significant difference under two-tailed unpaired t test, *p < .05, **p < .01, ***p < .001, ****p < .0001. Error bars denote ±SEM across neurons.
G&H) Group-level results, showing the number of significant cells in the face (blue) and object (orange) versions of the task, as well as across
regions (AMG, amygdala; AH, anterior hippocampus; PH, posterior hippocampus).
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28/565 (4.96%), one-sided binomial test p = 0.5462). When looking

for spatial target cells, by examining firing rates in relation to the

player's target destination (Figure 3b,e), we did find a significant num-

ber of spatial target cells (Figure 3h; TH-face: 43/608 (7.07%), one-

sided binomial test p = 0.0155; TH-object: 40/565 (7.08%), one-sided

binomial test p = .0187). We additionally analyzed the Treasure Hunt

data for serial position representations, as shown in previous datasets,

by examining whether there was a modulation of firing activity during

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 3 Individual neurons in the Treasure Hunt task respond to stimuli, target location, and serial position. Neurons in the Treasure Hunt
task were identified if they responded to stimulus presentations (a,d,f), spatial features (b,e,h), and/or serial position of presented items (c,f,i). For
all analyses, the first two rows show example neurons (top/blue: face version; bottom/orange: object version) and the bottom row shows group
level results, across stimulus variants and regions. (a,d) Stimulus responsive neurons were identified if they have a significant response to
presented stimuli. (b,e) Spatial target cells were identified based on having a firing field related to the location of the target (chest) location. (c,f)
Serial position cells were identified based on having a differential firing rate related to the serial position of the four chests presented per trial.
Vertical lines indicate normalized start and end points of each chest navigation epoch. (g–i) Group-level results, showing the number of significant
neurons in the face (blue) and object (orange) versions of the task, as well as across regions (AMG, amygdala; AH, anterior hippocampus; PH,
posterior hippocampus).
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navigation based on the serial order of the four chests that were pre-

sented per trial (Figure 3c,f). We found a significant number of serial

position cells in both variants of the Treasure Hunt task (Figure 3i;

TH-face: 98/608 (16.78%), p < 10�23, one-sided binomial test; TH-

object: 77/565 (13.63%), p < 10�14, one-sided binomial test). Across

all significant cells, place and target cells had even representation

across the arena, with serial position cells having an over-

representations of first and last positions (Supplemental Figure 2),

consistent with prior results (Tsitsiklis et al., 2020).

3.3 | Overlap results

We next examined the overlap between neuronal responses across

the two tasks, starting by comparing stimulus responses across both

tasks. To do so, we used Chi-squared tests to examine the number of

cells that responded across one or both tasks. We found a significant

overlap between the neurons that were found to be stimulus-

responsive in one-back and those that were stimulus-responsive in

Treasure Hunt (Figure 4a–c; face-version: 31 overlap neurons

(30.39%), p = .0003, Chi-squared test; Figure 4d–f; object-version:

15 overlap neurons (21.74%), p = .0018, Chi-squared test). Similarly,

there was evidence of an over-representation of identity representa-

tion in the one-back task, when compared with more general stimulus

response in Treasure Hunt, though this was only trending in the face

version (face-version: 14 overlap neurons (27.45%), p = .0586, Chi-

squared test; object-version: 15 overlap neurons (18.07%), p = .0207,

Chi-squared test). This overlap suggests that a significant number of

neurons maintained a consistent representation, responding to faces

or objects, across tasks. These results also show that there are a

(a) (b) (c)

(d) (e) (f)

F IGURE 4 Overlap results for same representation. Examples of neurons with responses across both task contexts for neurons with the same
kind of representation, responding to stimuli presentations across both tasks, for face stimuli (a–c) and for object stimuli (d–f). (a,d) Example
neurons that respond to stimuli in both the one-back and Treasure Hunt task. (b,e) Average waveforms for the example neurons in (a,d) split
across tasks. The waveforms are very similar, motivating that these detected units are well isolated and represent the same neuron across tasks.
(c,f) The number of task responsive neurons, including the number of neurons that respond in only one task, and the number of overlap neurons
that respond in both tasks.
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substantial number of neurons with task-specific responses

(Supplemental Figure 3).

We then measured the cells that shifted the nature of their repre-

sentations between tasks, examining the stimulus- and identity-

responsive cells from the one-back task as compared to target- and

serial-position-responsive cells from the Treasure Hunt task. We

found that neurons that were stimulus responsive in the one-back

task often responded at particular serial positions in Treasure Hunt,

though this overlap was only significantly over-represented with the

object stimuli (Figure 5a–c; face-version: 18 overlap neurons

(17.65%), p = .6453, Chi-squared test; Figure 5d–f; object-version:

17 overlap neurons (24.64%) p = .0044, Chi-squared test). This pat-

tern of results, in which the neurons that respond to all stimuli during

the one-back task shift to represent particular serial positions during

Treasure Hunt, provides an example of how some neurons can change

the nature of their coding fundamentally between different behavioral

task settings. The full set of overlap results, including non-significant

overlaps, is available in Table 2.

Finally, to examine the full pattern of results across all neurons,

for task combinations for which we observed a significant number of

overlap neurons, we examined the pattern of statistical measures (t-

values or f-values) for each analysis. In order to illustrate different

potential patterns, we used simulated data to demonstrate four pos-

sible relationships of responses between tasks, including having cor-

related responses, having uncorrelated responses, having task

specific responses, and having a combination of task specific

responses and neurons that respond to both tasks (Figure 6a–d). The

empirical distributions appeared qualitatively consistent with the

simulated data that was created with a combination of task-specific

and overlapping responses (Figure 6e–f). Specifically, in the empirical

(a) (b) (c)

(d) (e) (f)

F IGURE 5 Overlap results for different representations. Examples of neurons with responses across both task contexts, for neurons with
different representations, responding to different aspects of each task for face stimuli (a–c) and for object stimuli (d–f). (a,d) Example neurons that
respond to stimuli in the one-back task and to serial position in the Treasure Hunt task. (b,e) Average waveforms for the example neurons in (a,d),
split across tasks. The waveforms are very similar, motivating that these detected units are well isolated and represent the same neuron across
tasks. (c,f) The number of task responsive neurons, including the number of neurons that respond in only one task, and the number of overlap
neurons that respond in both tasks.
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data, there were no significant correlations between the statistical

measures (spearman correlation, all p's > .05), which is also consis-

tent with their being a combination of task specific and task general

responses. Overall, we conclude from these analyses that there are

neurons that do respond across tasks, but that this appears to repre-

sent a subset of neurons, as many neurons appear to respond in a

task-specific manner.

4 | DISCUSSION

In this study, we leveraged the human capacity for rapidly shifting task

demands to investigate representations in individual neurons in the

MTL across distinct behavioral contexts. We did so using a paired-task

session including a one-back visual working-memory task followed by

a spatial-navigation and memory task with human participants. Of the

TABLE 2 Full set of overlap results

OB cell labels

Number of

cells in OB TH cell labels

Number of

cells in TH

Number of

cells overlap

Percentage of

cells overlap p-value

Stimulus 102, 69 Stimulus 108, 61 31, 15 10.39%, 21.74% .0003, .0018

Spatial target 43, 40 7, 7 6.86%, 10.14% .9279, .2894

Serial position 98, 77 18, 17 17.65%, 20.64% .6453, .0044

Identity/

category

51, 83 Stimulus 108, 61 14, 15 27.45%, 18.07% .0586, .0207

Spatial target 43, 40 2, 8 3.92%, 9.64% .3591, .3251

Serial position 98, 77 9, 13 17.65%, 15.66% .7564, .5586

Note: The full set of comparisons between tasks. For the columns with multiple entries, each entry is organized as (face task version, object task version).

Reported p-values are for Chi-squared tests evaluating whether the number of neurons that overlap across tasks is different than expected by chance.

(a)

(e) (f)

(b) (c) (d)

F IGURE 6 Group level comparison of responses across tasks across all neurons. (a–d) Simulated data showing hypotheses of potential
relationships of the task-related activity across two distinct tasks. Four potential relationships are shown: (a) responses are correlated between
tasks, (b) responses are uncorrelated across tasks, (c) responses are task-specific, such that individual neurons respond to single task only,
(d) there is a combination of task-specific responses, whereby most neurons respond to one task only, with a subset of neurons that respond to

both tasks (‘overlap’ neurons). (e–f) Empirical distributions comparing the statistical measures for different responses between tasks, shown for
the pairings in which there was evidence of a significant number of overlap neurons. Each data point represents an individual neuron, plotted
based on the statistical measures computed for different analyses (f-value or t-value, depending on the analysis–note that t-values are absolute
valued). Each data point is colored by the outcomes of the analyses (yellow: not significant in either task; purple: only significant in the one-back
task measure; green: only significant in the Treasure Hunt task measure; black: significant in both the one-back and Treasure Hunt task measures.
Inset text shows the correlation values. The overall pattern of the empirical data is most consistent with the simulated hypothesis in which there
is a combination of task specific and overlap neurons.
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neurons that responded in both tasks, some neurons do maintain a

consistent representation, by responding to the same class of stimuli

across task contexts, whereas other neurons appear to switch their

representation, responding to one type of feature in one task, and

switching to represent a different, seemingly unrelated, feature in a

subsequent task. Our findings thus contribute to the discussion on

the specificity (or lack thereof) of neural representations at the level

of individual neurons. Relatedly, it helps to address an implicit tension

in the literature–given an ever-expanding number of experiments that

often report between �5% and 50% of neurons that respond to a par-

ticular variable of interest, it quickly becomes practically impossible

that each of these reflects a unique and independent set of neurons

with a consistent feature encoding. Addressing this tension, here we

show that while individual neurons in the human MTL can have what

appear to be specific and selective responses within a particular con-

text, across different tasks with disparate demands, neurons can flexi-

bly shift between different representations.

We note that while this experiment motivates that individual neu-

rons can have a variable representation across contexts in the MTL,

this is distinct from the notion of ‘mixed selectivity’ in which individ-

ual neurons respond to multiple features simultaneously. For example,

in the prefrontal cortex, individual neurons with ‘mixed selectivity’
can non-linearly encode combinations of multiple features, suggesting

a code in which variables of interest are thought to be represented

across ensembles of neurons (Duncan, 2001; Fusi et al., 2016; Rigotti

et al., 2013). The findings in our study are distinct from this notion of

broadly tuned neural responses, and do not suggest that MTL neurons

respond broadly to a mixture of features within the same task, but

rather that they can have a selective response in one context, which

flexibly reorganizes to a different selective response in another con-

text. This distinction emphasizes that there is likely a high degree of

regional specificity in the nature of neural representations, with differ-

ent brain networks using distinct strategies to encode task-relevant

information.

The particular design and task set used in this experiment also

reflect a targeted combination of MTL related functions, including

having representations related to concepts (Quiroga, 2012) and to

spatial navigation (Moser et al., 2017). The combination of tasks in this

experiment were specifically tuned to relate to these seemingly dis-

tinct functions of the MTL, with much discussion about the relation of

these distinct functions, and how they each relate to memory. We

found that neurons in the same regions engage in both spatial and

concept-related tasks, with a clear overlap between cells engaged in

the two tasks, replicating and extending previous studies using each in

isolation to show spatial (Tsitsiklis et al., 2020) and identity-related

responses (Cao et al., 2021; Cao, Wang, et al., 2022) in the human

MTL. We also ran these tasks with two distinct sets of stimuli (faces

and objects), and while there were some small differences, there was

not overall a clear distinction between the two different stimulus ver-

sions of the tasks.

One way to contextualize our findings is in relation to the notion

of ‘cognitive maps’ (Behrens et al., 2018; Schiller et al., 2015;

Tolman, 1948), or similarly considering the MTL as a relational

processing system (Eichenbaum & Cohen, 2014). Under this frame-

work, the hippocampus and surrounding areas can be thought to rep-

resent abstract relations across dimensions, whereby space is a

prominent, but non-exclusive, domain for which a map can be con-

structed. Our experiment is consistent with the MTL being involved in

generalized relational representation, finding responses that relate to

space, sequences, and stimulus categories within a single recording

session. We note however, that while our experiment is consistent

with the general notion of ‘cognitive maps’, the specific patterns of

changing representations are not clearly the pattern of dynamic repre-

sentation that might be predicted under this framework. It could be

hypothesized, for example, that individual neurons in a ‘cognitive
map’ would have a conserved function of representing locations in

different dimensional spaces across contexts, representing for exam-

ple, locations in physical space in one task context and location in

stimulus space in another. The changes in representations we

observed were largely related to more broadly tuned representations

such as stimulus responses, which are not entirely consistent with

such a change in representation that relates to mapping specific

locations in different feature spaces. Future work should seek to

continue to evaluate individual neurons across distinct tasks in order

to better evaluate how and understand why neurons appear to

change their representations.

This experiment emphasizes that the MTL is able to flexibly adapt

to representing task-relevant features across changing behavioral

demands. This may also relate to a potentially surprising aspect of our

results, whereby we found a significant number of spatial target cells,

but that we did not find a significant level of place cells. This general

finding, in which there is stronger evidence for spatial target encoding

rather than player location, is consistent with previous analyses of an

independent dataset using this task (Tsitsiklis et al., 2020). This kind

of encoding of remote target locations is reminiscent of non-human

primate work in which MTL neurons often represent remote locations

(Rolls & Wirth, 2018), including spatial-view cells which encode the

viewing location of the monkey (Rolls, 1999), grid-like representation

of visual space (Killian et al., 2012), and schema cells which respond to

abstract representations of space (Baraduc et al., 2019). Viewpoint-

specific representations of visual scenes have also been observed in

human MTL with fMRI (Epstein et al., 2003). In contrast to our find-

ings, other human work using different virtual-navigation tasks has

found place cells (Ekstrom et al., 2003; Miller et al., 2013). We thus

hypothesize that the predominance of spatial-target responses

observed here may relate to the behavioral demands. Notably, the

Treasure Hunt task has an emphasis on the remote location of visible

chest locations, rather than on current location, such that participants

likely focused on the remote target locations while navigating, which

is reflected in the spatial target cells. This shift in the nature of loca-

tion tuning between place and spatial-target cells is consistent with

the broader pattern we found here between the one-back and spatial

tasks, where human MTL neurons flexibly vary their coding properties

depending on task demands.

Beyond single-neuron recordings, our findings are also consis-

tent with other human work that has emphasized that the same
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circuits seem to be involved in multiple distinct feature representa-

tions and tasks. Based on a review of human studies predominantly

using fMRI, the human MTL has been found to have a similar func-

tional organization in relation to spatial navigation as has been estab-

lished in animal models, including elements of the hippocampal

network that activate during specific spatial settings (Epstein

et al., 2017). Building on this homology, other fMRI experiments

have established that the same or similar circuits are engaged when

participants engage in non-spatial tasks that can still be conceptual-

ized as ‘navigating’ feature spaces. For example, in an experiment in

which participants made social decisions in a role playing game, ana-

lyzing the task decisions as movements through a social space

revealed task-related activations in the hippocampus (Tavares

et al., 2015). In another experiment that involved making decisions

about items varying across a 2d feature space, grid-like activations

were found in a set of regions that are also related to spatial naviga-

tion (Constantinescu et al., 2016). While these fMRI studies do not

allow for inference on the activity of single neurons, they reflect a

growing literature that is establishing that the same MTL circuits

engage in different tasks, including across the domains of spatial

tasks, faces, and object categories, within which our current work

helps to evaluate the single-neuron correlates of how these circuits

become flexibly recruited across task contexts.

A key limitation of the previous literature as it pertains to explain-

ing the relations of representations across contexts is that the major-

ity of previous literature examines how individual neurons represent

variables of interest in experiments using only a single task or across a

limited behavioral context. One reason for this is that most animal

models require extensive training on behavioral tasks, and it is there-

fore practically difficult to have animals quickly and flexibly maneuver

between completely different tasks while recording across the same

neurons. Here, we leveraged the benefits of working with humans,

which allows for rapidly switching between multiple complex tasks.

By using a paired-task session, this research design required only mini-

mal practical updates to deploy a protocol in which two distinct tasks

could be run adjacent in time in order for the data to be spike sorted

and analyzed together. In future work, this experimental design could

continue to be applied in other human single-neuron recording set-

tings across different task combinations in different brain areas to fur-

ther probe questions about neural representations across task

contexts. Although some of these questions can also be examined

with fMRI, which conveniently allows for multiple scans in the same

individuals, single-neuron recordings have the advantage of providing

much higher spatial and temporal precision that is useful for measur-

ing precisely timed neuronal signals such as those that represent spe-

cific locations during active navigation.

We also note that it is typical for human single-neuron research

participants to complete multiple different tasks across the 1–

2 weeks that they are typically in the Epilepsy Monitoring Unit

(EMU). In principle, the kinds of comparisons performed in this study

could be extended across more tasks, potentially even with retro-

spective data, pending some technical challenges of aligning and

analyzing data across recording sessions done at different times.

Most notably, this requires having strategies for aligning spike sort-

ing solutions across recording sessions in order to align putative sin-

gle units. While it is unclear to what extent historical data may be

alignable, prospectively recording long-term collections of ongoing

data may also provide a strategy for analyzing data across sessions

(Chaure & Rey, 2020), though more work is needed with this

approach. Overall, we propose that analyzing single-neuron activity

across task contexts is a fruitful research strategy that leverages the

benefits of working with humans in order to answer important ques-

tions about neural representations.

5 | CONCLUSION

The medial temporal lobe is a complex structure that is known to be

involved in multiple cognitive processes, including spatial navigation,

representing high-level concepts, and memory processing. Here, we

investigated the relation between these seemingly distinct functions, by

using a paired-task session in which the activity of the same neurons can

be evaluated across task contexts. By doing so, we were able to show

that there are multiple patterns of neural activity across tasks, whereby

some neurons are active only in one task context, some neurons main-

tain a similar representation, and some neurons appear to switch their

representation entirely, responding to seemingly distinct features in dif-

ferent task contexts. By showing that individual neurons can change the

nature of their coding scheme between different behavioral tasks, our

results contribute to a broader understanding of how the brain supports

a broad range of behaviors. Our results show that individual neurons

change their coding scheme between behaviors, demonstrating that, at

least in the medial temporal lobe, there is a substantial degree of flexibil-

ity in neural networks, as opposed to requiring dedicated brain regions

for individual behavioral tasks and types of neural representations. This

topic may be a useful area for future research that could assess the mod-

ularity and flexibility of neural coding more generally and characterize

the principles that explain the transformations in neural coding by indi-

vidual neurons that appear between tasks.
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