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Abstract 

The brain is a complex, interconnected network and the large-scale spatiotemporal coordination 
of neuronal activity is vital for cognition and behavior. Prior studies have proposed that traveling 
waves of brain oscillations are one mechanism that helps coordinate complex neuronal processes 
and are crucial for cognition. Traveling waves consist of oscillations that propagate progressively 
across the cortex and previous studies have shown that these waves play a foundational role for 
learning, memory processing, and memory consolidation and a range of other behaviors across 
multiple species. The prevalence of traveling waves in cognition thus indicates that 
spatiotemporal patterns of neuronal oscillations may coordinate multiple neuronal brain networks 
and impact behavior. Even though there are several different approaches for analyzing traveling 
waves using electrophysiological recordings, computational tools targeting the analysis and 
visualization and understanding of traveling waves are still rare. We briefly review the literature 
on human intracranial electroencephalography (iEEG), which has shown that traveling waves 
play an important role in cognition. We then describe a statistical methodology based on 
circular–linear regression for the detection and analysis of traveling waves from human 
electrophysiological oscillations. We hope that this approach will provide a more mechanistic 
understanding of the coordination of neurons across space and time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Prior research has shown that neuronal oscillations play a fundamental role for learning, memory 
processing, and consciousness in the brain across species (1, 2) (see also Chapter 22). Starting 
from the discovery of alpha frequency band (8-12 Hz) oscillations by Hans Berger in 1929 (3) in 
scalp electroencephalograhy (EEG) recordings in humans to the advent of invasive 
electrocorticogram recordings in 1949 by Jasper and Penfield in humans (4), oscillations are now 
widely believed to play an important role for spatiotemporal coordination among multiple brain 
networks (2). Growing evidence suggests that oscillations do not occur at individual neurons in 
an isolated way, rather they occur simultaneously across multiple neurons in a given small brain 
area or on a larger scale across multiple brain areas  (5).  

 

Oscillation-based temporal synchronization among neurons is a foundational mechanism for 
information transfer and coordination among neurons (2). These synchronization mechanisms 
are usually thought to involve zero-phase-lag synchronization among neurons, where phases of 
the recordings from multiple electrodes are temporally aligned (6). However, recent studies have 
found waves of electrical activity propagating across the cortex in the human brain (7-15). This 
was possible because of improved methods in analyzing simultaneous intracranial EEG (iEEG) 
recordings from many brain areas (5), which have shown systematic spatial variation of 
instantaneous phases of the electrodes across the cortex. These systematic phase delays reveal 
the progressive propagation of neuronal activity across the cortex, known as traveling waves, 
which have been shown to be closely related to behavior (5).  

 

Studies in animals showed that the frequency, strength, direction, and speed of traveling waves 
correlate with a broad range of behaviors in animals. These include visual perception (16-23), 
movement initiation (24-28), and memory processing (29, 30) in non-human primates as well as 
visual processing (31-33) and spatial navigation (34-36) in rodents. However, currently, there are 
no well-established methods for analyzing traveling waves in the human brain and rigorous 
computational tools specifically targeting the visualization and understanding of traveling waves 
are rare. Therefore, even though oscillations are seemingly ubiquitous in the human brain (2), 
many of the potential traveling waves associated with those oscillations have been missed. 
Although some iEEG studies in humans have demonstrated a role for traveling waves in 
cognition (5), systematic studies with rigorous analysis of traveling waves are still lacking.  

 

In this chapter, our focus is on the development of novel approaches for the detection and 
analysis of traveling waves from human iEEG recordings. Most prior studies in the last two 
decades have detected traveling waves predominantly in scalp EEG and 
magnetoencephalography (MEG) recordings (37-42). However, several recent iEEG studies in 
humans have also demonstrated the existence of traveling waves (7-15). These iEEG recordings 
are from pharmaco-resistant epileptic patients who underwent neurological surgery for removal 
of their seizure onset zones. Traveling waves in these studies were usually detected and analyzed 
using the spatial gradient of the phases of the recordings from the iEEG electrodes (9, 12). 



Traveling waves are present spontaneously during resting-state conditions such as eye-closure 
(9) (Figure 1A) and passive fixation (43) (Figure 1B). Traveling waves are also present during 
sleep spindles suggesting their putative role in memory consolidation and plasticity (8, 12) 
(Figure 1C). More recently, traveling waves were also detected during movement imagery 
suggesting their putative role in coordinating complex movements (13) (Figure 1D). 
Furthermore, traveling waves play a prominent role during speech processing (11), and also, 
during working memory, suggesting their putative role for memory processing as well (15) 
(Figure 1E).  

 

To provide a broader introduction for how to measure traveling waves in the human brain, we 
describe an approach based on circular statistics to capture and analyze traveling waves amidst 
neuronal oscillations in iEEG recordings. Our approach overcomes several challenges for 
analyzing these waves in the human brain. First, we describe novel approaches for detecting 
oscillations in the iEEG electrodes and introduce methods to detect groups of nearby electrodes 
each having an oscillation at nearly identical frequencies. We then describe methods to detect 
and analyze the features of waves of electrical activity propagating across the cortex 
corresponding to these detected oscillations. We also introduce a novel approach based on 
circular statistics to track the progressive variation of the phases across multiple electrodes and 
subsequently detect traveling waves based on the fitted parameters of a circular-linear regression 
model. And, finally, we describe several features of the detected traveling waves and how they 
are intimately related with human behavior. Our approach is rigorous and can be used to identify 
multiple foundational mechanisms underlying the propagation of traveling waves and to reveal 
their link with behavior.  

 

Approach to measure traveling waves of neuronal oscillations 

 

Many previous studies of traveling waves in animal models used relatively simple analytical 
approaches based on the spatial gradient of phases. These approaches made sense because neural 
recording electrodes in animals are usually implanted in a relatively small area of the brain that 
was consistently placed across animals. However, there are several inherent aspects of human 
iEEG datasets that make it challenging to detect and analyze traveling waves. In particular, 
placements of electrodes across patients can be highly variable due to the complicated clinical 
protocols involved and can consist of multiple types of electrodes such as grid, strip, and depth 
electrodes (44, 45). Furthermore, the frequencies of neuronal oscillations can vary substantially 
across human patients, even after controlling for task behavior and electrode placement (15). 
Due to these challenges, an improved method for measuring traveling waves would be preferable 
if it were able to accommodate the specific features of the signals in a given patient’s iEEG 
recordings.    

 

Our method overcomes these challenges by customizing the analysis pipeline according to the 
iEEG recordings from each individual patient (15, 43). This approach consists of two primary 
steps: (i) The first step consists of identification of spatially contiguous clusters of electrodes 



with narrowband oscillations at similar frequencies. Identifying a group of nearby electrodes 
with a single oscillation frequency is crucial since, by definition, a traveling wave involves a 
single frequency and whose phase progressively propagates through these electrodes, thus 
making it possible to detect the traveling wave when it passes by these electrodes. (ii) The 
second step consists of identification of systematic spatial variation of the instantaneous phases 
of the electrodes for each cluster, defined to be a traveling phase wave. This step is important 
since we want to capture the systematic phase delays of the wave across the group of electrodes 
in the oscillation cluster identified in step (i) above, thus enabling us to detect the presence or 
absence of a traveling wave. Once these systematic spatial variations in phases have been 
detected, we can then analyze the features of this spatial phase propagation and examine its 
relationship with human behavior. These procedures are detailed below. Our new approaches are 
flexible in the sense that they can be easily applied to other domains of brain imaging such as 
scalp EEG and MEG recordings as well as recordings from animal models.  

 

Identification of oscillations and clustering algorithm 

 

By definition, a traveling wave involves a neuronal oscillation that appears with a time delay 
across multiple regions of the cortex. Therefore, our first step in identifying these patterns is to 
detect oscillations that appear at a single frequency at multiple nearby electrodes. To detect such 
patterns, we first identify spatially contiguous clusters of electrodes with oscillations at the same 
or similar frequencies (15, 43). Critically, we perform this procedure in an adaptive fashion that 
is well suited for human iEEG data by accommodating differences in electrode positions and 
oscillation frequencies across individuals. This flexibility is especially important since iEEG 
electrodes in humans can be in the form of grid, strip, or depth electrodes and can also span 
multiple brain areas. Our approach can overcome this challenge by detecting waves which can 
travel through multiple types of electrodes and spanning many different brain areas, including 
both gray matter and white matter volumes.  

 

The first step to detect oscillations in neuronal signals is estimating their power distribution in 
the frequency domain and distinguishing true narrowband rhythmic oscillations from background 
fluctuations such as the 1/f signal (15). There are several methods that can been used for such 
steps (15, 46, 47) (see also Chapters 24 and 31). In our work, we have used Morlet wavelets to 
compute the power spectra of the neuronal oscillations. Morlet wavelets are useful particularly 
for analyzing intracranial recordings because of their superior ability to detect transient, possibly 
non-stationary, oscillatory dynamics (15, 48). After using Morlet wavelets to measure each 
electrode’s power spectrum, we then distinguish true narrowband oscillations as those that have 
peaks that are significantly greater than the background 1/f spectrum. We use a thresholding 
procedure to ensure that we specifically focus on significant narrowband oscillations that are 
reliably different from the background 1/f signal at an electrode (46).  

 

We use this approach to identify narrowband oscillations at each recording site and eventually, to 
find multiple nearby electrodes oscillating at nearly the same frequency. To distinguish 



narrowband peaks in an electrode’s power spectrum from the background signal, we fit a line to 
each patient’s mean power spectrum in log–log coordinates using robust linear regression (15) 
(Figure 2A). We then subtract the actual power spectrum from the regression line. This 
normalized power spectrum removes the 1/f background signal and emphasizes narrowband 
oscillations as positive deflections (Figure 2A.1). We identify narrowband peaks in the 
normalized power spectrum as any local maximum greater than some predefined threshold. In 
our work (43), we used a threshold of one standard deviation above the mean, but other 
thresholds could be used depending on the experimenter’s needs. This method reliably identifies 
the frequencies where individual electrodes show strong oscillations, as can be seen in Figure 
2A.1 which shows our approach from two example electrodes. One of these electrodes has a 
narrowband oscillation that we successfully detected at the theta frequency band and the other 
has one at alpha band, thus demonstrating the efficacy of this approach.  

 

Next, to identify traveling waves (see below), we focus on the groups of contiguous electrodes 
that show oscillations at the same frequency. We focus on the contiguous electrode groups 
because our focus is to characterize the oscillations that are traveling waves by having each cycle 
propagating across contiguous regions of cortex. To identify these groups, or oscillation clusters, 
we implement a spatial clustering algorithm that we designed to find the contiguous groups of 
electrodes that exhibit narrowband oscillations at a given frequency (Figure 2A.1). To identify 
the specific electrodes that comprise a spatially contiguous group, we first create a pairwise-
adjacency matrix that indicates whether each pair of electrodes is contiguous. This matrix 
indicates whether each electrode pair is separated by less than some predefined threshold (such 
as <= 20 mm (15)). Finally, we use this adjacency matrix to identify mutually connected spatial 
clusters of electrodes by computing the connected components of this graph (49). In our work, 
we only include clusters with at least four connected electrodes in our analysis. Further, in our 
work, we have allowed for some electrodes to show oscillations at nearby but nonidentical 
frequencies (such as within 10%; see (15)), which allows our procedure to accommodate 
oscillations that can slightly vary across frequencies. However, note that some parameters of this 
method could be tweaked according to the experimenter’s needs. Once we identify a group of 
electrodes that oscillate at same or similar frequencies, we can then design methods to detect the 
presence or absence of a traveling wave. This is described below.  

 

Identification of traveling waves 

 

After identifying oscillation clusters in each person, which will distinguish the contiguous 
regions of cortex that oscillate at a single frequency, the next step in our framework is to identify 
traveling waves that propagate across that cluster (12, 15). Quantitatively, we can define a 
traveling phase wave as a set of simultaneously recorded neuronal oscillations at the same 
frequency whose instantaneous phases vary systematically with the location of the electrodes, 
such that individual cycles of the oscillation move across the cortex. A challenge for quantifying 
and tracking the traveling spatial patterns in human intracranial recordings is tracking the 
systematic presence of multiple cycles of oscillations across multiple electrodes. To perform this 
task, we use a circular-linear regression which models the relation between oscillation phase and 



electrode position (Figure 2B). Since the phase wraps around every 360 degrees, a circular-
linear regression model, leveraging circular statistics (50), is important to use rather than a 
conventional linear model (Figure 2B).  

 

To identify traveling waves from the phases of electrodes in each oscillation cluster (Figure 
2A.2), we first measure the instantaneous phases of the signals from each electrode of a given 
cluster by applying a zero phase-lag filter at the peak frequency of the detected oscillation. In our 
analysis, we have used a Butterworth filter at the cluster’s narrowband peak frequency 
(bandwidth [fp ×.85, fp / .85] where fp is the peak frequency). We then use the Hilbert transform 
on each electrode’s filtered signal to extract the instantaneous phase at each time-point of the 
iEEG recordings (15). However, other transforms such as the Fourier and wavelet transforms can 
also be used to extract the instantaneous phases of the electrodes as well. These instantaneous 
phase values are then fed-in to the circular-linear regression model described below.  

 

In a traveling wave, the phases of an ongoing oscillation are spatially organized, with a 
systematic phase shift across space in the cortex. Accordingly, to measure such patterns, use a 
2D circular-linear regression to quantitatively measure the relation between oscillation phase and 
electrode position. This regression lets us assess whether the observed phase pattern varies 
linearly with the electrode’s coordinates (Figure 2A.3).  

 

The structure for our circular-linear model is as follows. xi and yi represent the 2-D coordinates 
and θi the instantaneous phase of the ith electrode. Whereas the original electrode positions are of 
course in 3D in the brain’s volumetric coordinates, we reduced the data to 2-D coordinates xi and 
yi corresponding to the cortical surface by projecting the 3-D Talairach coordinates of electrodes 
into the best-fitting 2-D plane using principal component analysis. Even though this procedure is 
most applicable to subdural grid electrodes, it can be applied to stereo EEG depth electrodes as 
well (43). This procedure can also be carried out in the 3-D volumetric space in the brain, 
however, projecting the 3-D coordinates to 2-D helps in better visualizing and interpreting the 
traveling wave (43). Based on the 2D electrode coordinates, to measure the phase propagation, 
we then fit a 2-D circular-linear model to the phase distribution at each timepoint. This model 
has the following structure, 

          = (a xi + b yi + ϑ) mod 3600,  

where  is the predicted phase, a and b are the phase slopes corresponding to the rate of phase 
change (or spatial frequencies) projected into each of the orthogonal dimensions, and ϑ is the 
phase offset.  

 

Circular–linear models do not have an analytical solution and, hence, we fit them iteratively 
using numerical methods (50), which makes this procedure computationally complex. To 
simplify model fitting, we first convert the parameters of the model from cartesian coordinates to 
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polar coordinates. We define α = atan2(b, a) which denotes the angle of wave propagation and ξ 
=  which denotes the spatial frequency (Figure 2A.4). We fit α and ξ to the distribution 
of oscillation phases at each time point by conducting a grid search over  and x Î[0, 
180/d] in sufficiently small increments of phase and phase/space steps respectively (for example, 
the step sizes used by (43) are 5° and 0.5°/mm for phase and phase/space respectively). Note that 
ξ = 180/d corresponds to the spatial Nyquist frequency of 180/d °/mm, corresponding to the 
highest spacing d mm between neighboring electrodes. We fit the model parameters (a= ξcos(α) 
and b= ξsin(α)) for each time point to most closely match the phase observed at each electrode in 
the cluster. We compute the goodness of fit as the mean vector length  of the residuals between 

the predicted ( ) and actual (θi) phases (50), 

 

            , 

 

where n is the number of electrodes. We choose the selected values of α and ξ to maximize . 
We repeat this procedure for each oscillation cluster. To measure the statistical reliability of each 
fitted traveling wave, we examined the phase variance that was explained by the best fitting 

model. To do this, we compute the circular correlation  between the predicted ( ) and actual 
(θi) phases at each electrode (43): 

                                                   , 

where bar denotes averaging across electrodes. Finally, to account for the variation in the number 
of electrodes across clusters, we apply an adjustment to control for number of fitted model 
parameters (43): 

      , 

where k is the number of independent regressors (k=3 in this case). We refer to  as the wave-
strength of the traveling wave (15) as it quantifies the strength of the traveling wave (note that 

 has been referred to as phase gradient directionality (PGD) in some prior studies (12, 15, 

26)). We note that  can now be compared across different clusters and subjects with varying 
number of electrodes. To test for the statistical significance of a traveling wave, we shuffle the 
coordinates of the electrodes and re-estimate the strength of the wave for each shuffling. In this 
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way, we construct a histogram of surrogate wave-strength values against which we then compare 
the empirical wave-strength to test for the presence or absence of a traveling wave (43).  

 

A step-by-step visual demonstration of the circular-linear regression approach to detect traveling 
waves has been illustrated in Figure 3 for the iEEG recordings measured on two trials of a task, 
one with a traveling wave and the other without a wave. As a result of this fitting procedure, the 
direction α represents the spatial orientation at which the traveling wave propagates with a 
continuously increasing phase gradient through the cortex (Figure 3). When this direction α is 
visualized as an arrow on a brain plot, the traveling wave’s propagation can be seen visually. In 
these plots, individual oscillation cycles appear at relatively early timepoints on the electrodes 
near the tail of the directional arrow and at later latencies on electrodes near the head of the 
arrow (Figure 1A).   

 

Features of traveling waves 

 

The 2D circular-linear model that we described above is a very useful quantitative tool for 
measuring the instantaneous properties of the traveling waves at each moment. The fitted 
coefficients a and b from the model can be used to calculate all the key features of the current 
traveling wave on that electrode cluster (Figure 2A.4). For example, the parameters α and ξ in 
the polar coordinates denote the angle of wave propagation and the spatial frequency 
respectively. Other features of the traveling wave such as the wavelength (2π/spatial frequency) 
and the speed (wavelength´frequency) can be readily derived from these parameters as well.  

 

Another defining advantage of our proposed approach is that traveling waves can be reliably 
detected on a single-trial level using our methods. In a working memory task (15), we were able 
to detect traveling waves in ~81% of clusters at the single-trial level and ~67% of clusters had 
consistent traveling waves at the single-trial level which also had a consistent propagation 
direction. In another study using a verbal working memory task (51), we found that frontal theta 
and temporal alpha traveling waves are more reliably detected during the earlier periods of a trial 
compared to late detection of reliable temporal theta traveling waves in a trial, during the 
memory encoding periods.  

 

Current studies have indicated that multiple features of traveling waves are related to human 
behavior (11, 51) (Figure 4). Traveling waves exist across a broad range of frequencies, starting 
from low frequency delta to higher frequency beta bands. Prior iEEG studies have detected 
traveling waves at alpha frequency during eye-closure resting-state in subdural grid electrodes 
(9), similar to the alpha waves observed in scalp EEG recordings (37). Recently, we have found 
traveling waves of theta and beta oscillations during passive fixation resting-state in the insula 
using stereo-EEG depth electrodes (43), indicating that traveling waves are present in not only 
the surface of the cortex, but also deep brain structures such as the insula. This finding also 
suggested that whereas lower frequency alpha oscillations are a defining feature of the resting 



brain at the surface of the cortex, higher beta frequencies may play an enhanced role in deeper 
structures of the cortex such as the insula. Other studies have also shown that these traveling 
waves are also highly relevant for memory processing in the human brain, and not just in resting-
state. Specifically these studies have shown a crucial role for theta and alpha oscillatory traveling 
waves during a working memory task (15) and also verbal episodic memory task (51), 
suggesting that lower frequency oscillations might be more relevant for memory processing in 
the human brain. Some other studies have also shown a role of low frequency delta, theta, and 
alpha oscillatory traveling waves during speech processing as well (11). On the other hand, 
higher frequency beta oscillatory traveling waves play an important role during movement 
imagery (13) and sleep spindles (8, 12), in line with the role of beta frequency for sensorimotor 
neuronal activity processing and propagation of sleep spindles in the human brain, respectively.  

 

The frequencies of these oscillations that we just described usually define the speed of 
propagation of traveling waves. Indeed, lower frequency traveling waves such as theta and alpha 
usually propagate in the range ~0.25-1 m/s (9, 15, 51), whereas higher frequency beta traveling 
waves usually propagate in the range ~0.5-5 m/s (12, 13). In our previous studies, we have also 
found that the speed of a traveling wave increases with an increase in its oscillation frequency 
(15). Moreover, prior work on computational modeling of weakly coupled oscillators has also 
shown that traveling waves can naturally emerge from spatially varying gradients of oscillations 
across different frequencies (52) and suggests that the propagation speed of these waves depends 
on the associated oscillation frequency. However, it is important to observe that these waves 
were detected using subdural grid electrodes on the surface of the cortex. In our more recent 
work, using stereo EEG depth electrodes, we have found that waves travel at ~0.7 m/s in the 
insula during passive fixation resting-state condition for both low frequency theta and higher 
frequency beta oscillations (43). This indicates that the speed-frequency relation of the traveling 
waves that we observe on the cortical surface may not be relevant for deep brain structures such 
as the insula and suggests that putatively different mechanisms might be involved for the origin 
of these traveling waves for the cortical surface and deeper cortical regions. Further studies are 
needed to definitively examine the speed-frequency relationship of these traveling waves. 
Rigorous computational models of these waves can go a long way in providing important 
insights into the characteristics of these traveling waves and the link between the different 
features of these waves. It is worth noting that, all these types of traveling waves features, and 
more, can be detected at each moment using the methods we described here. 

 

Another important feature of a traveling wave is its propagation direction. The direction of a 
traveling wave informs us about the spatiotemporal coordination of different brain regions and 
its relation to behavior. In our previous studies, we have found that waves usually propagate 
from higher frequency regions to lower frequency regions (15), suggesting that the different 
features of traveling waves are inter-linked. More importantly, several studies have found that 
the propagation direction of these waves is linked to human behavior. The directions of traveling 
waves can distinguish speech compared to non-speech trials (11), successful memory encoding 
compared to unsuccessful memory encoding and memory recall in a verbal episodic memory 
task (51), and fast response times compared to slow response times in a working memory task 
(15), demonstrating its behavior relevance. Moreover, the directions of traveling waves also shift 



across brain regions. During eye-closure resting-state (9), waves travel from anterosuperior to 
posteroinferior direction broadly across the cortex. In a working memory task (15), the waves 
travelled from posterior to anterior direction in the frontal and temporal lobes, however no 
definite wave direction was found in the occipital and parietal lobes.  

 

Furthermore, the timing (or phase) of traveling waves also plays a critical role in human 
cognition. In our recent study, we have shown that the timing of a wave precisely defines fast 
and slow response times, in a working memory task (51). These results may be similar to a set of 
findings in animals, where the phase of traveling beta oscillations predicted stimulus detection in 
visual perception (17).  

 

Together, across this broad literature, these findings suggest that multiple features of traveling 
waves simultaneously define different behavioral states in humans. Since our proposed 
methodology can directly extract all these features of the traveling waves, it provides a useful 
tool for probing the direction of information flow for the precise spatiotemporal coordination of 
neuronal activity underlying different behaviors in humans.   

 

Discussion 

 

Oscillations play a prominent role in the brain and studies across multiple species have shown 
that they are correlated with learning, memory processing, and consciousness (1, 2). Even though 
oscillations are seemingly ubiquitous in the human brain (2), how these oscillations 
spatiotemporally coordinate neuronal activity across multiple brain regions, has remained 
elusive, due to lack of well-established methods for rigorously analyzing these oscillations. 
Recent advances (5) in obtaining highly precise, simultaneous intracranial EEG recordings from 
many brain areas have shown systematic spatial variation of instantaneous phases of the 
electrodes in an oscillation cluster which lays the foundation for possible existence of traveling 
waves. Intracranial recordings from subdural grid, strip, or depth electrodes often contain 
dynamics which are complex and it’s difficult to visualize time-periods of systematic 
spatiotemporal patterns across broad regions in the brain and often, can be missed by separately 
analyzing individual traces of electrodes as is often done by neurologists (45). Using these types 
of traditional analysis, we can visualize the waves only when the recordings align with the 
direction of wave propagation and this may be the reason why many of the previous intracranial 
EEG studies might have missed these traveling waves (45), which are now known to be 
ubiquitous across the human brain (5). Traveling waves exist across multiple cognitive domains 
such as resting-state, speech, memory processing, and sleep, in the human brain, using iEEG 
recordings. Previous studies detected and analyzed traveling waves using the spatial gradient of 
the phases of the iEEG recordings (9, 12).  

 

Here we described a new approach based on circular statistics to capture and analyze traveling 
waves in iEEG recordings. Our approach is general and can quantitatively measure all key 



features of these traveling waves. This approach consists of two primary steps, (i) identification 
of spatially contiguous clusters of electrodes, and (ii) identification of systematic spatial 
variation of instantaneous phases of the electrodes for each cluster, defined to be a traveling 
phase wave. Even though we described our approach in an iEEG setting, our methods are also 
applicable to other modalities such as scalp EEG, MEG, and optical recordings as well as field 
potential and depth electrode recordings in animals. These may be promising areas of future 
work because there is evidence for traveling waves in these settings as well (31, 34, 37, 53-55). 
Moreover, several features of traveling waves can be directly extracted from the parameters of 
our circular-linear regression model. We can then analyze the relationship of these features to 
different human behaviors as we have done in our previous studies (14, 15, 43, 51).  

 

It is important to note that even with our analysis method, a number of features of the data must 
be satisfied in order to measure traveling waves. In particular, measuring traveling waves 
accurately requires adequate sampling of electrodes across the region that exhibits each 
oscillation. The detection of traveling waves is also constrained by the size of an oscillation 
cluster, and a sufficient number of electrodes, all oscillating at nearly similar oscillation 
frequencies, is necessary to capture a wave traveling across the cortex (15). To find the features 
of traveling waves that reliably correlate with behavior, owing to inter-individual differences in 
oscillations (15), a large sample size of patients may be important to reveal the key features of 
traveling waves. In one of our previous studies, we detected traveling waves across 77 patients in 
a working memory task (15), and we had found substantial heterogeneity in oscillation frequency 
and direction of these waves across patients. To this end, open-source data sharing efforts (see 
Chapter 45) will be crucial to analyze inter-individual and gender-related differences of 
traveling waves across large cohorts of patients.  

 

Given that we found evidence for the existence of traveling waves across several frequency 
bands such as the delta, theta, alpha, and beta ranges (14, 15, 43, 51), it raises an important 
question of how the waves in these bands relate to each other. Previous studies have shown that 
theta and beta traveling waves in the human insula travel independently of each other during 
resting-state (43). In another study, gamma power was phase-locked to alpha traveling waves in 
the human neocortex (7), similar to the more traditional phase-amplitude coupling mechanism 
found in the human cortex (56). However, how the interactions of these waves in different 
frequency bands relate to human behavior remains unknown and future studies specifically 
focusing on developing novel methods for analyzing the interactions between these waves at 
different frequencies and their links to human cognition are needed to fill this important gap.    

 

The new methods that we have developed related to traveling waves could potentially be 
informative about information coding in local neuronal activity and how it is coordinated across 
larger brain networks. Many brain areas that show traveling waves, including the hippocampus 
(14) and the neocortex (15), are also regions that show gradients in neural coding. Because the 
timing of local neuronal activity is phase-locked to specific phases of traveling waves (7, 47), it 
suggests that traveling waves may underlie neuronal processing by supporting a type of temporal 
multiplexing, in which only certain subregions in particular cortical areas are active at a given 



moment (57). We previously noted that traveling waves allow particular cortical regions to be 
consistently indexed by the phase delay of the overlying traveling waves, because human 
traveling waves maintain a consistent spatial frequency across trials (14). Combined with the 
findings that various cortical regions such as the hippocampus and the frontal lobe show 
gradients in neural representations that match the direction of traveling waves propagation (58, 
59), this suggests that traveling waves could be important for large-scale information coding by 
allowing different cortical representations to be indexed at specific phase delays. Our rigorous 
approaches to precisely estimate the different features of traveling waves would thus be 
informative of a new type of cortical communication involving the role of traveling waves to 
coordinate cortico–hippocampal interactions.  

 

It is also important to note that traveling waves also exist during interictal spiking activity (60) as 
well as seizures (61). It thus becomes critical to distinguish traveling waves arising from 
pathological activity from those arising from putative normal brain function, and further research 
is needed to develop more advanced methods for classification of normal and non-normal 
traveling waves (62). Finding strong relations between the different features of these traveling 
waves and human behavior may help to avoid interpretational difficulty between putative normal 
and pathological traveling waves.    

 

Even though we focused on methods to detect and analyze planar traveling waves here due to 
their behavioral relevance (11, 15, 51), more complex patterns of traveling waves such as radial 
and spiral waves have also been detected in the human brain, especially during sleep spindles (8, 
12), and also recently, in monkey (29, 63) and rodent (64, 65) brains. It will be interesting to 
show whether and how these more complex radial and spiral traveling waves are relevant for 
other types of behaviors such as learning, and verbal episodic and spatial memory tasks in 
humans. These complex patterns of traveling waves might also indicate excitation/inhibition of 
neural ensembles in the brain. For example, the center of an outward spiral or a source traveling 
wave might putatively have elevated neuronal excitation compared to the rest of the cortex and 
an inward spiral might have comparatively decreased neuronal excitation, in light of 
computational models that showed that traveling waves propagate from areas with faster intrinsic 
rhythmicity to the slower ones (52). This may help us identify brain regions with relatively 
distinctive levels of excitation/inhibition. Therefore, it is crucial to develop rigorous signal 
processing methods to carry out a comprehensive analysis of these complex patterns of traveling 
waves. Relatedly, some previous studies have suggested the use of curl and divergence analysis 
of spatial phase gradients to detect radial and spiral traveling waves (12, 31, 66, 67). Building on 
this work, an interesting future research direction would be to develop new methods by 
extending the circular-linear regression model-based methods presented here to account for more 
complex patterns such as radial or spiral waves or any combinations of these wave patterns. In 
our recent work, we have adopted the circular-linear regression approach described here to detect 
localized traveling waves by fitting the phase-plane in a localized sub-cluster of electrodes 
(Figures 1B, 4A) and shown that it is possible to estimate features of traveling waves for 
individual electrodes rather than the entire cluster of electrodes, and found more complex 
patterns of traveling waves beyond planar waves (43). Additional work is necessary to fully 
characterize the spatiotemporal features of these complex patterns of traveling waves, and this 



could provide a key step towards more fully distinguishing the functional role of the 
spatiotemporal dynamics of brain oscillations in various types of cognition.  
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Figure 1. Traveling waves in the human brain across multiple domains, detected using iEEG. (A) Traveling 
waves during eye-closure resting-state condition. Alpha oscillations in patients propagated as traveling waves in 
the cortex during eye-closure resting-state condition. Colors of electrodes represent the phases of their oscillations  
(left panel) and traces represent the raw voltages of the marked electrodes (right panel). Adapted with permission 
from Halgren et al., 2019. (B) Traveling waves during passive fixation resting-state condition in the insula. Beta 
oscillations in the human insula propagated as traveling waves during passive fixation resting-state condition. Shown 
is an example of implanted stereo EEG electrodes in a patient (left panel), with arrows denoting the direction of the 
traveling wave associated with each electrode (right panel). Adapted with permission from Das et al. 2022. (C) 
Traveling waves during sleep spindles. Sleep spindles are traveling waves in the human brain. When visualized on 
the cortex, individual spindle cycles are often organized as rotating waves traveling from temporal (+0 ms, top) to 
parietal (+20 ms, middle) to frontal (+40 ms, bottom) lobes. Adapted with permission from Muller et al., 2016. (D) 
Traveling waves during movement imagery in the sensorimotor cortex. Alpha rhythmic activity during imagined 
movement in a representative individual. Shown are filtered signals for the five electrodes numbered on the brain plot 
(left panel). Cortical phase maps indicate the average phase at each cortical site relative to a central sensorimotor 
reference electrode. Local arrows indicate the propagation direction at each electrode, with arrow size weighted by the 
local phase gradient magnitude (right panel). Large global arrow indicates the mean propagation direction across the 
sensorimotor cortex, with arrow size weighted by the alignment of sensorimotor gradients. Alpha rhythm propagation 
is maximal in a caudo-rostral direction (red distribution, denoted by a polar plot). Adapted with permission from Stolk 
et al., 2019. (E) Traveling waves during memory processing. Alpha-theta oscillations are traveling waves in 
humans while performing a working memory task. Example shows data from a patient with an 8.3-Hz traveling wave 
(right panel). Shown are raw signals from three selected electrodes (left panel), the selected electrodes are ordered 
from anterior (top) to posterior (bottom). Also shown are the filtered signals (filtered at 6–10 Hz) for the eight 
electrodes numbered on the brain plot. Adapted with permission from Zhang et al., 2018.   
 

 

 



 
Figure 2. Detection and analysis of traveling waves. (A) Flowchart illustrating the pipeline for detecting and analyzing traveling waves. First column: Identification of 
spatially contiguous clusters of electrodes with narrowband oscillations at similar frequencies. Narrowband oscillation at each electrode was identified by fitting a line to each 
electrode’s mean power spectrum in log–log coordinates using robust linear regression and then subtracting the actual power spectrum from the regression line. This normalized 
power spectrum removes the 1/f background signal and emphasizes narrowband oscillations as positive deflections. Shown are two oscillation clusters, one oscillating at theta 
frequency and the other at alpha frequency. Second column: Calculation of phases of the electrodes for each oscillation cluster. Phases of the oscillations were calculated using 
Hilbert transform on the filtered signals. Colors in this figure show the phases of the electrodes corresponding to the alpha oscillation cluster in the first column. Third column: 
Circular-linear regression was used to identify traveling waves of phase progression for each oscillation cluster at each time point. For each spatial phase distribution, two-
dimensional (2-D) circular–linear regression was used to assess whether the observed phase pattern varies linearly with the electrode’s coordinates in 2-D. Shown are solid 
circles representing the actual phases, the fitted plane, which is the predicted phase, and bars denoting the residuals between the actual and predicted phases. Fourth column: 
Features of traveling waves were calculated based on the fitted parameters of the circular-linear regression model. Shown are electrodes with colors denoting the phases and 
arrow denoting the direction of the traveling wave, with distribution of directions in blue, denoted by a polar plot. (B) Advantages of the circular-linear regression model for 
the identification of traveling waves. Due to the circular nature of the phase, any potential linear association between phase and electrode coordinates can be better estimated 
by the circular-linear model (right) compared to the linear regression model (left).  



 

 

 

Figure 3. Examples of detection of traveling waves for two representative trials. Left and right columns 
correspond to two example trials demonstrating the absence and presence of a traveling wave respectively. Top row: 
Phase organization of electrodes in two representative trials of a cortical recording array with 49 electrodes. Colors 
represent the instantaneous phase of each electrode. Observe the systematic spatial variation of the phases of the 
electrodes in the right column indicating the presence of a traveling wave. Contrast this to the left column where there 
is no systematic spatial variation of the phases indicating the absence of a traveling wave. Middle row: Filtered LFP 
traces of five adjacent electrodes as labelled in the top row. Observe that the amplitude peaks occur at successively 
later times for electrodes 1-5 in the right column in contrast to the left column. Red-colored, vertical dashed lines 
represent the time-instants at which the phase distributions were plotted in the top row. Bottom row: Fitted planes 
estimated from the circular-linear regression analysis showing the best fit between the phases and the locations of the 
electrodes. Solid circles denote the actual phases of the electrodes with the colors as in the top-row and the vertical 
bars denote the residuals between the actual phases and the predicted phases using the circular-linear regression. The 
thick black arrows indicate the orthogonal vectors of the fitted planes and gray arrows represent the projection of 
these orthogonal vectors on the X-Y plane (cortical plane). Observe the smaller vertical bars in the right column 
indicating the presence of a traveling wave in contrast to the larger vertical bars in the left column indicating the 
absence of a traveling wave. Features of the traveling wave can be estimated by the parameters of the fitted plane (Fig 
2.A).   



 

 
Figure 4. Features of traveling waves and potential behavioral relevance. (A) Wave-strength. (Left): Cartoon 
demonstration showing that systematic variation of the phase in space indicates high wave-strength, while non-
systematic variation of phase indicates low wave-strength. (Right): Filtered signals of electrodes from two different 
trials (corresponding to the two different brain plots) from a representative patient performing a verbal episodic 
memory task, demonstrating high and low strength of traveling waves. Arrows denote the direction of the waves with 
colors denoting the phases. Note the lower residuals, indicating higher wave-strength in the first column, with higher 
residuals indicating lower wave-strength in the second column. In humans, no association has been found between 
wave-strength and behavior (51). Adapted with permission from Mohan et al., 2022. (B) Direction. (Left): Cartoon 
demonstration of forward and backward direction of traveling waves. (Right): iEEG recordings of the hippocampus 
from a patient demonstrating that the direction of traveling waves is dependent on the timing of a speech task, with 
waves traveling opposite to each other for speech compared to non-speech periods. Adapted with permission from 
Kleen et al., 2021. (C) Phase. (Left): Cartoon demonstration linking behavior to the phase of the traveling waves 
(excitable versus non-excitable). (Right): Recordings from electrocorticographic electrodes in a representative patient 
performing the Sternberg working memory task shows that the reaction time of the patient is correlated with the phase 
of the traveling wave in each electrode, shaping a spatial map for the preferred phase of the traveling wave for the 
optimal performance. Adapted with permission from Mohan et al., 2022.  


